
Pytorch Tutorial



Part1: Basic Concepts



What is Pytorch

● A more advanced Numpy with GPU support and other accelerations.

● An automatic differentiation library which is handy for Deep
Learning.



Tensors

● Basic data structure in Pytorch
○ Similar to arrays, matrices, like np.ndarray
○ With more features (it can carry gradient)

● In Pytorch, all data are used as Tensors
○ Inputs
○ Outputs of the models
○ Parameters of the models
○ etc.



Tensors: Creation

Create Tensors:

● From list
● From numpy array
● Use some provided functions:

○ Rand
○ Ones
○ Zeros



Tensors: Conversion

● Host different types of data
○ Float
○ Double
○ Long

● Host data on different devices
○ CPU
○ GPU



Tensors: Operation

Most of operations we used in numpy 
are supported:

● Slicing
● Concat
● Broadcasting
● Computation (e.g. Multiply)

● Tensor copying

● Convert from and to numpy



Autograd & Computation Graph

Computation sequence in Pytorch

-> Computation Graph 

Autograd: Automatic gradient computation

● Pytorch handle the gradient flow
automatically

● We only need to perform computation as
usual

a b c

+

d

e

*



Autograd: Example

a b c

+

d

e

*

e=(a+b)*c



Optim Module: Optimization

Optim module handles the optimization part during the learning.

Optimizer in Optim module:

● Update parameters according to optimization method: like SGD, Adam
● Common parameters:

○ Learning rate
○ Weight decay



Optim: Example

Use previous example to 
show how optim module 
works



Useful Links

● Official Tutorial: https://pytorch.org/tutorials/
● Pytorch Youtube Series:

https://www.youtube.com/playlist?list=PL_lsbAsL_o2CTlGHgMxNrKhzP
97BaG9ZN

https://pytorch.org/tutorials/
https://www.youtube.com/playlist?list=PL_lsbAsL_o2CTlGHgMxNrKhzP97BaG9ZN
https://www.youtube.com/playlist?list=PL_lsbAsL_o2CTlGHgMxNrKhzP97BaG9ZN


Part 2: Modules



NN Module: Neural Network

NN Module provide implementation of common layers:

● Linear, Conv2d, RNN, etc

Layers in NN module:

● Keep track of parameters
● Handle the computation



NN Module: Example

● Linear
○ Parameter: weight & bias
○ Computation: linear transformation



NN Module: Conv2D

● Conv2D: Convolutional layer
○ Parameter: weight & bias
○ Computation: convolution between vectors

● Out = (W-K+2P)/S + 1
○ W: Input width
○ K: Kernel
○ P: Padding
○ S: Stride

(32-3+0)/1 + 1 = 30

Animation example: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


NN Module: Conv2D

(32-3+2)/1 + 1 = 32

● Conv2D: Convolutional layer
○ Parameter: weight & bias
○ Computation: convolution between vectors

● Out = (W-K+2P)/S + 1
○ W: Input width
○ K: Kernel
○ P: Padding
○ S: Stride



NN Module: Conv2D

● Conv2D: Convolutional layer
○ Parameter: weight & bias
○ Computation: convolution between vectors

● Out = (W-K+2P)/S + 1
○ W: Input width
○ K: Kernel
○ P: Padding
○ S: Stride

(32-3+0)/2 + 1 = 15



NN Module: Conv2D Example

● Conv2D: Convolutional layer
○ Parameter: weight & bias
○ Computation: convolution between vectors

● Out = (W-K+2P)/S + 1
○ W: Input width
○ K: Kernel
○ P: Padding
○ S: Stride

(32-3+0)/2 + 1 = 15



NN Module: Build model with Sequential

● Sequential: Combine multiple layers
● Create the model for your NN

(32-3+0)/2 + 1 = 15



NN Module: Build model with Sequential

● Sequential: Combine multiple layers
● Create the model for your NN

(32-3+0)/2 + 1 = 15



DataParallel

● Very easy to use multiple GPUs
● Run computations in parallel



Dataset and DataLoader

● Iterable over a dataset
● Customizing data loading order
● automatic batching, etc.



Training with multiple Losses

https://stackoverflow.com/questions/53994625/how-can-i-
process-multi-loss-in-pytorch



Dynamic computation graphs

● Static computation graphs (TF):
○ Phase 1: Build the architecture/graph structure
○ Phase 2: Run data through it

● Dynamic computation graphs (Pytorch):
○ Dynamic graphs are more flexible
○ Build graph structure and perform computation
○ at the same time. Debug Friendly.




