Pytorch Tutorial



Part1: Basic Concepts



What is Pytorch

e A more advanced Numpy with GPU support and other accelerations.

e An automatic differentiation library which is handy for Deep
Learning.



Tensors

e Basic data structure in Pytorch
o Similar to arrays, matrices, like np.ndarray
o  With more features (it can carry gradient)

e |n Pytorch, all data are used as Tensors
Inputs

Outputs of the models

Parameters of the models

etc.

o O O O



Tensors: Creation

data = [1,7,6]
tensor = torch.tensor(data)
print(tensor)

Create Tensors:
tensor([1, 7, 6])

e From list np_array = np.array(data)
tensor = torch. from _numpy(np_array)
(
From numpy array print(tensor)
e Use some provided functions: tensor([1. 7. 61)
o Rand
o Ones shape = (1,2)
rand t = torch.rand(shape)
o Zeros ones t = torch.ones(shape)

zeros t = torch.zeros(shape)

print(rand_t)
print(ones_t)
print(zeros t)

tensor([[0.7883, 0.1005]1])
tensor([[1., 1.11)
tensor([[0., 0.]11)



Tensors: Conversion

e Host different types of data

o Float a = torch.Tensor([1,7,6])
print(a.dtype)
o Double print(a.double().dtype)
o Long print(a.long().dtype)
e Host data on different devices b = torch.LongTensor([1,7,6])
o CPU print(b.dtype)
o GPU # Using GPU

print(a.to("cuda:0").device)

torch.float32
torch.float64
torch.int64
torch.int64
cuda: 0



Tensors: Operation chape = (2,2)

a = torch.ones(shape)
b = torch.zeros(shape)
print("Slice:")

Most of operations we used in numpy print(al:, 11)
print(“"Concat:")
are supported: print (torch.cat([a,b]))
print("Broadcast:")
L print(torch.ones((2,1)) * torch.ones(1, 2))
() S||C|ng print("Compute:")
print(a * b)
1 Concat Slice:
) tensor([1., 1.])
e Broadcasting Concat:
. ) tensor([[1., 1.1,
e Computation (e.g. Multiply) (1., 1.1,
. (0., 0.1,
e Tensor copying (0., 0.11)
Broadcast:
tensor([[1., 1.1,
[1., 1.11)
e Convert from and to numpy Compute:

tensor([[0., 0.]
[0.,

(<]
—
—
~—



Autograd & Computation Graph

Computation sequence in Pytorch

-> Computation Graph
Autograd: Automatic gradient computation

e Pytorch handle the gradient flow
automatically

e We only need to perform computation as
usual




Autograd: Example

e

= torch.tensor([1.], requires_grad=True)
= torch.tensor([7.], requires_grad=True)
= torch.tensor([6.], requires_grad=True)
=a+b

=c*d

.backward()

print(a.grad)
print(b.grad)
print(c.grad)

tensor([6.]1)
tensor([6.1])
tensor([8.1])

e=(a+b)*c




Optim Module: Optimization

Optim module handles the optimization part during the learning.

Optimizer in Optim module:

e Update parameters according to optimization method: like SGD, Adam

e Common parameters:

o Learning rate
o Weight decay



. a = torch.tensor([1.], requires_grad=True)
Opt” Nn. Example b = torch.tensor([7.], requires_grad=True)
c = torch.tensor([6.], requires_grad=True)

optim = torch.optim.SGD(
[a, bl,

Use previous example to ir = 16-3
. )
show how optim module
d=a+b
works e=c*d

optim.zero grad()
e.backward()
optim.step()

print(a)
print(b)
print(c)
print(a.grad)
print(b.grad)
print(c.grad)

tensor([0.9940], requires_grad=True)
tensor([6.9940], requires_grad=True)
tensor([6.], requires grad=True)
tensor([6.1)

tensor([6.])

tensor([8.])



Useful Links

Official Tutorial: https://pytorch.org/tutorials/
Pytorch Youtube Series:

https://www.youtube.com/playlist?list=PL IsbAsL 02CTIGHgMxNrKhzP
97BaG9/N



https://pytorch.org/tutorials/
https://www.youtube.com/playlist?list=PL_lsbAsL_o2CTlGHgMxNrKhzP97BaG9ZN
https://www.youtube.com/playlist?list=PL_lsbAsL_o2CTlGHgMxNrKhzP97BaG9ZN

Part 2: Modules



NN Module: Neural Network

NN Module provide implementation of common layers:

e Linear, Conv2d, RNN, etc

Layers in NN module:

e Keep track of parameters
e Handle the computation



linear = torch.nn.Linear(5, 10)

input_t = torch.rand(2, 5)

output_t = linear(input_t)
NN Module: Example -~ toreh.cun(output ©
s.backward()

print("Output:")
print(output_t.shape)
print("Parameters:")

print("weight:", linear.weight.shape)
print(“"Bias:", linear.bias.shape)

print("wWeight Gradient:", linear.weight.grad)
print("Bias Gradient:", linear.bias.grad)

i Output:
¢ Llnear torch.Size([2, 10]1)
o Parameter: weight & bias Barameters: =
] ] ) Weight: torch.Size([10, 51])
o Computation: linear transformation Bias: torch.Size([10])
Weight Gradient: tensor([[0.8517, 1.0757, 1.5897, 1.4474,
1.29111],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[06.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[06.8517, 1.0757, 1.5897, 1.4474, 1.2911],
[0.8517, 1.0757, 1.5897, 1.4474, 1.2911]1])
Bias Gradient: tensor([2., 2., 2., 2., 2., 2., 2., 2.,

2., 2.1)



NN Module: Conv2D

conv = torch.nn.Conv2d(3, 32, 3, stride=1, padding=0)
input t = torch.rand(1e, 3, 32, 32)

e Conv2D: Convolutional layer output_t = conv({input_t)
. i i print("Output:")
o Parameter: weight & bias print (output_t. shape)
o Computation: convolution between vectors print("Parameters:") ,
print("weights:",conv.weight.shape)
P Out — (W_K+2P)/S + 1 print("Bias:", conv.bias.shape)
: - Output:
o W:lInput width torch.Size([10, 32, 30, 30])
o K: Kernel Parameters:
] i Weights: torch.Size([32, 3, 3, 3])
o P:Padding Bias: torch.Size([32])
o S: Stride

(32-3+0)/1 +1 =30

Animation example: https://github.com/vdumoulin/conv_arithmetic



https://github.com/vdumoulin/conv_arithmetic

NN Module: Conv2D

conv = torch.nn.Conv2d(3, 32, 3, stride=1, padding=1)
input_t = torch.rand(10, 3, 32, 32)

e Conv2D: Convolutional layer PUER, AR CODVLSReL C)
. ; i print("OQutput:")
o Parameter: weight & bias print (output_t. shape)
o Computation: convolution between vectors print("Parameters:")
print("weights:",conv.weight.shape)
e OQOut= (W_K+2P)/S + 1 print(“Bias:", conv.bias.shape)
. ; Output:
o W: Input width torch.Size([10, 32, 32, 32])
. Parameters:
o K:Kemel Weights: torch.Size([32, 3, 3, 3])
) P: Padding Bias: torch.Size([32])
o S: Stride

(32-3+2)/1 + 1 = 32



NN Module: Conv2D

e Conv2D: Convolutional layer
o Parameter: weight & bias
o Computation: convolution between vectors
e Out=(W-K+2P)/S + 1
W: Input width
K: Kernel
P: Padding
S: Stride

(@)
(@)
(@)
(@)

conv = torch.nn.Conv2d(3, 32, 3, stride=2)
input_t = torch.rand(10, 3, 32, 32)
output t = conv(input t)

print("Output:")

print(output t.shape)
print("Parameters:")
print("weights:",conv.weight.shape)
print("Bias:", conv.bias.shape)

Output:

torch.Size([10, 32, 15, 15])
Parameters:

Weights: torch.Size([32, 3, 3, 3])
Bias: torch.Size([32])

(32-3+0)/2 + 1 =15



NN Module: Conv2D Example

e Conv2D: Convolutional layer

(@)

@)

Parameter: weight & bias
Computation: convolution between vectors

e Out=(W-K+2P)/S + 1

(@)
(@)
(@)
(@)

W: Input width
K: Kernel

P: Padding

S: Stride

conv = torch.nn.Conv2d(3, 32, 3, stride=1, padding=1)

input_t = torch.rand(10, 3, 32, 32,)
output t = conv(input t)

s = torch.sum(output_t)
s.backward()

print("Output:")

print(output t.shape)
print("Parameters:")
print("weights:",conv.weight.shape)
print("Bias:", conv.bias.shape)

print("weight gradient:", conv.weight.grad.shape)
print("Bias gradient: ", conv.bias.grad.shape)

Output:

torch.Size([10, 32, 32, 32])

Parameters:

Weights: torch.Size([32, 3, 3, 3])

Bias: torch.Size([32])

Weight gradient: torch.Size([32, 3, 3, 3])
Bias gradient: torch.Size([32])



NN Module: Build model with Sequential

from torch import nn

model = nn.Sequential(nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
. . ) )
e Sequential: Combine multiple layers

e Create the model for your NN

model

Sequential(
(0): Conv2d(1l, 20, kernel size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): Conv2d(20, 64, kernel size=(5, 5), stride=(1, 1))
(3): ReLU()

)



NN Module: Build model with Sequential

# Example of using Sequential with OrderedDict
from collections import OrderedDict

model = nn.Sequential(OrderedDict ([
('convl', nn.Conv2d(1,20,5)),

('relul’, nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
. ) ] ('relu2', nn.ReLU())
e Sequential: Combine multiple layers 1)
e Create the model for your NN model
Sequential(

(convl): Conv2d(1l, 206, kernel size=(5, 5), stride=(1, 1))
(relul): ReLU()
(conv2): Conv2d(20, 64, kernel size=(5, 5), stride=(1, 1))
(relu2): ReLU()

)



DataParallel

# Put your model on a GPU
device = torch.device("cuda:0")
model.to(device)

e Very easy to use multiple GPUs
. . # Copy your tensors to the GPU
e Run Computatlons In para”el mytensor = my tensor.to(device)

# Run operations on Multiple GPUs parallely
model = nn.DataParallel (model)



Dataset and DatalL.oader

e lterable over a dataset
e Customizing data loading order
e automatic batching, etc.

from torch.utils.data import Dataset, DataLoader

class RandomDataset(Dataset):

def

def

def

__init_ (self, size, length):
self.len = length
self.data = torch.randn(length, size)

__getitem_ (self, index):
return self.data[index]

__len_ (self):
return self.len

rand loader = DatalLoader(dataset=RandomDataset(5, 100),

batch size=30, shuffle=True, num workers=1)



Training with multiple Losses

#one
lossl.backward()
loss2.backward()
loss3.backward()
optimizer.step()
#two
lossl.backward()
optimizer.step()
loss2.backward()
optimizer.step()
loss3.backward()
optimizer.step()
#three

loss = lossl+loss2+10ss3

loss.backward()
optimizer.step()

Input Image Conv 11 %11 Conv § X35 Conv 3 X3 Conv 3 X3 Convix3
w/ max pooling w/ max pooling w/ max pooling

55x55x96

| 4096 4096

M Input

B Convolutional
B Fully-connected
B Loss-Function

https://stackoverflow.com/questions/53994625/how-can-i-
process-multi-loss-in-pytorch



Dynamic computation graphs

e Static computation graphs (TF):
o Phase 1: Build the architecture/graph structure
o Phase 2: Run data through it

e Dynamic computation graphs (Pytorch):
o Dynamic graphs are more flexible
o Build graph structure and perform computation

o atthe same time. Debug Friendly.

-

y_pred






