Object Detection

Xiaolong Wang

This Class: Object Detection

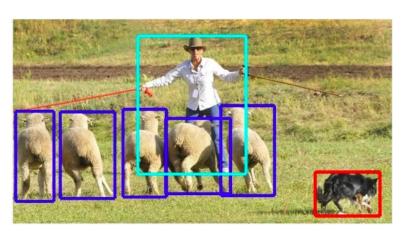
- Background and old fashion object detection
- 2-stage object detection
- FPN

Slides partially from: http://cs231n.stanford.edu/ https://slazebni.cs.illinois.edu/fall20/

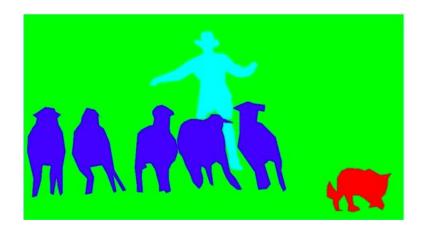
Background and old fashion object detection

The task: Object Detection

image classification



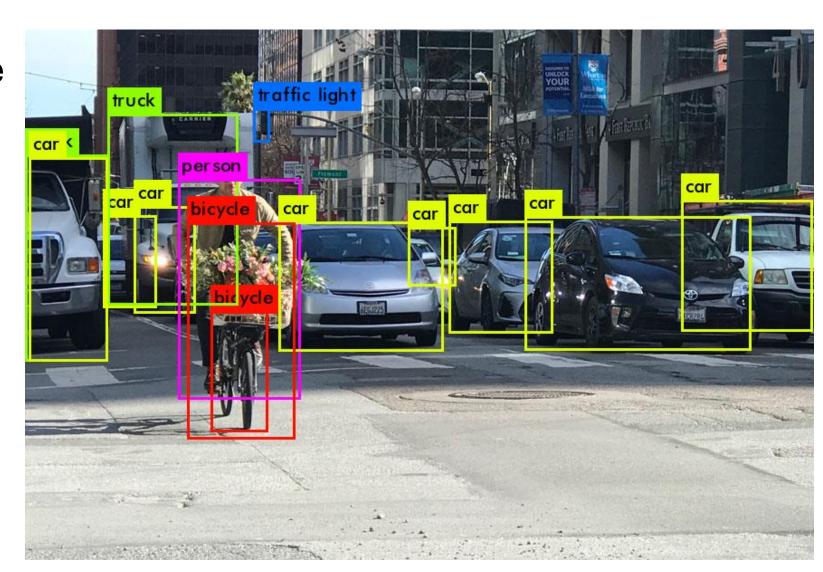
object detection



instance segmentation

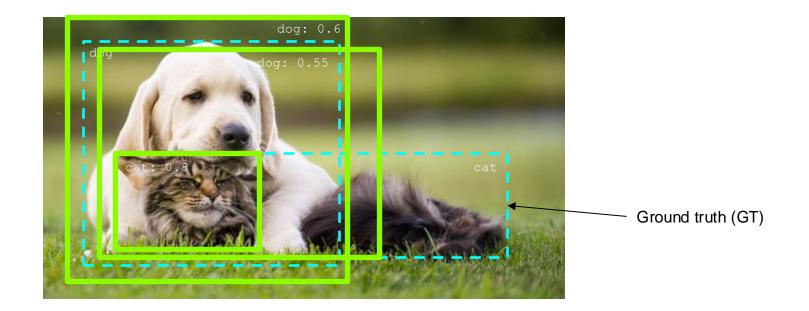
The task: Object Detection

Images may contain more than one class, multiple instances from the same class

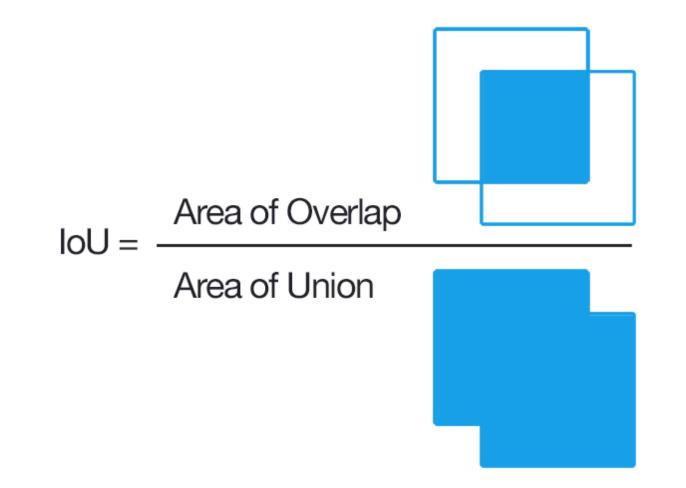


Evaluation

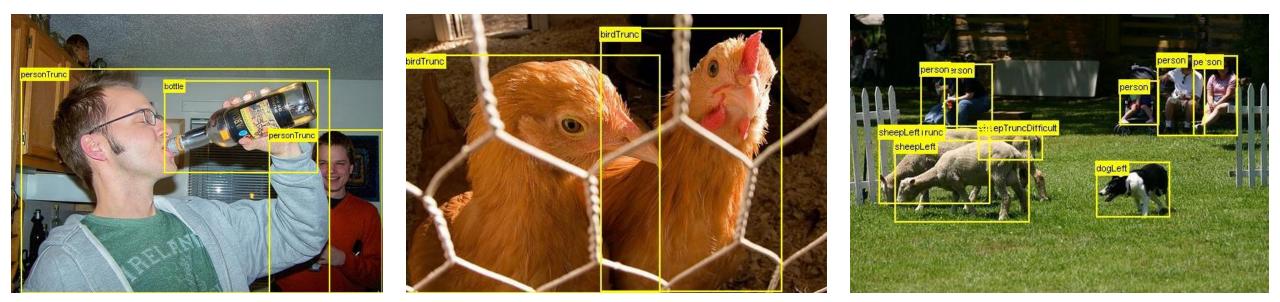
- At test time, predict bounding boxes, class labels, and confidence
- For each detection, determine whether it is a true or false positive
 - PASCAL criterion: Area(GT \cap Det) / Area(GT \cup Det) > 0.5
 - For multiple detections of the same ground truth box, only one is considered a true positive



Evaluation

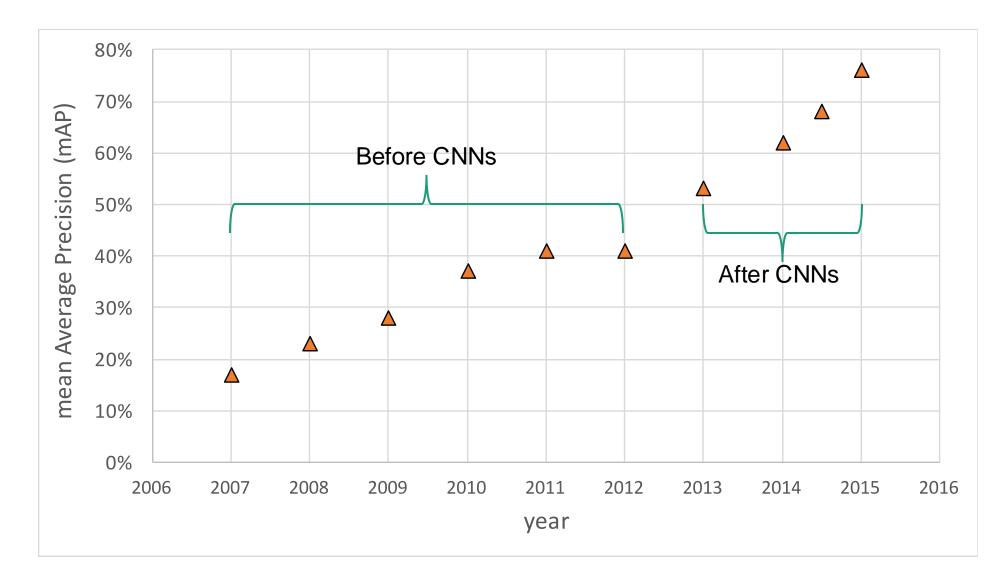


PASCAL VOC Challenge (2005-2012)



- 20 challenge classes:
 - Person
 - Animals: bird, cat, cow, dog, horse, sheep
 - Vehicles: airplane, bicycle, boat, bus, car, motorbike, train
 - Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor
- 11.5K training/validation images, 27K bounding boxes

PASCAL VOC Challenge (2005-2012)

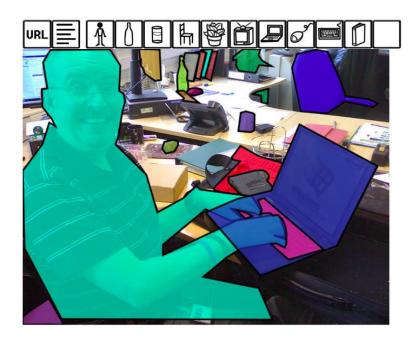


COCO dataset

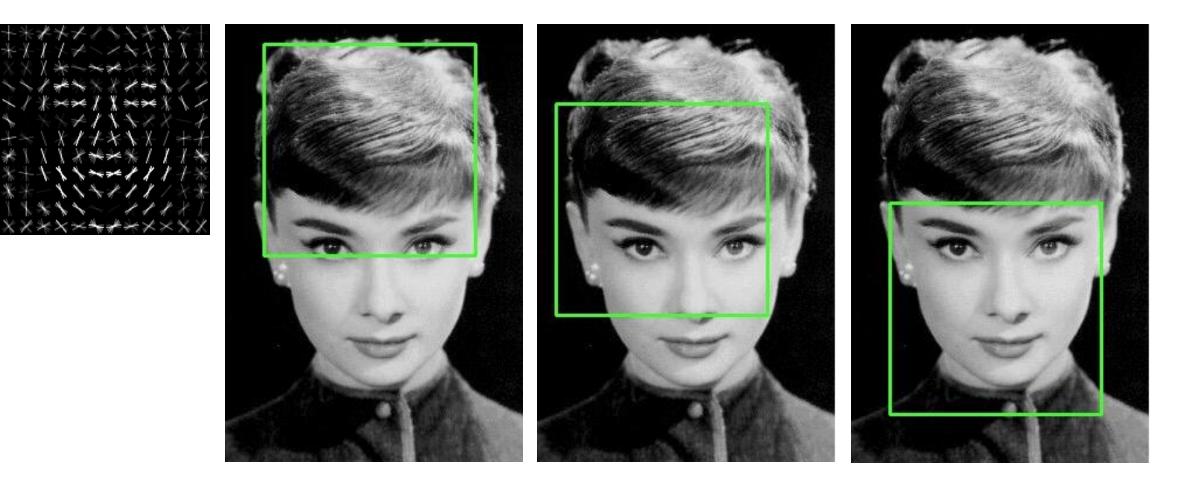
What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

Object segmentation
 Recognition in context
 Superpixel stuff segmentation
 330K images (>200K labeled)
 1.5 million object instances
 80 object categories
 91 stuff categories
 5 captions per image
 250,000 people with keypoints

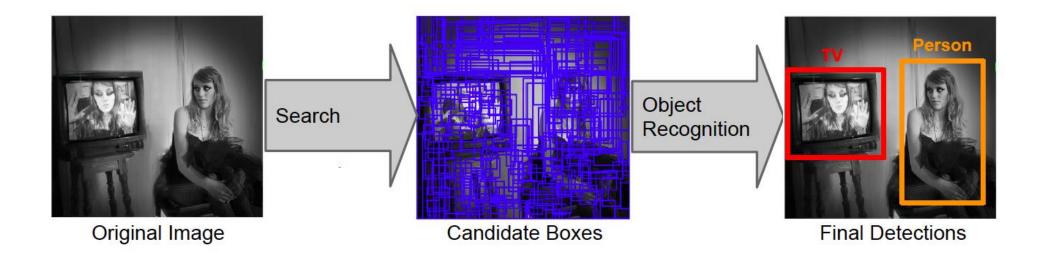


Sliding window approach for detection



Histograms of Oriented Gradients. Dalal et al. 2005

Object proposal for object detection



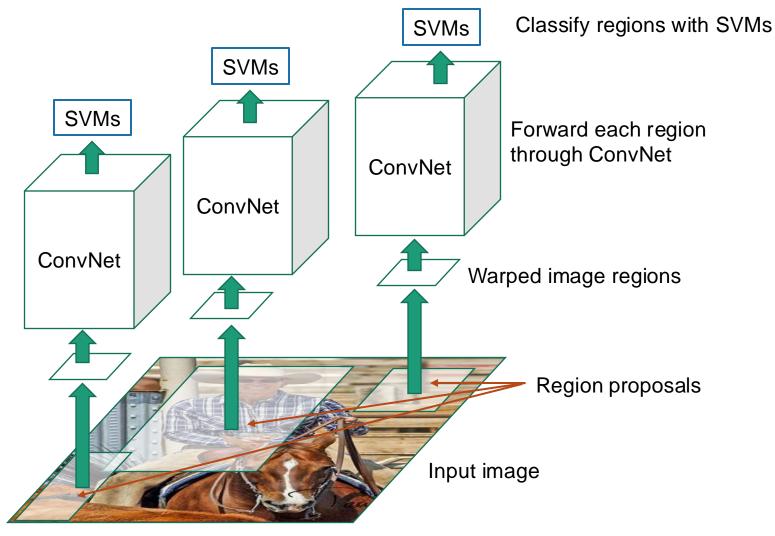
- First generate a lot of region proposals (using low-level cues)
- Classification on each proposal

Selective search to generate object proposal for object detection

• Use hierarchical segmentation: start with small *superpixels* and merge based on diverse cues

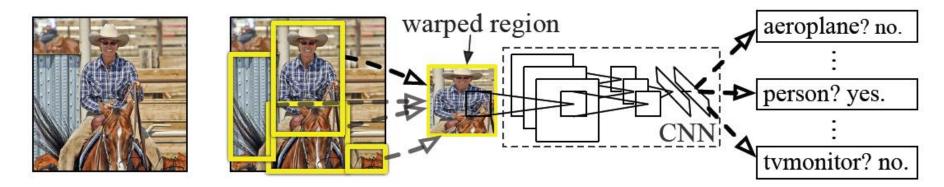
2-stage object detection

R-CNN: Region proposals + CNN



Girshick, et al, 2014

R-CNN: Region proposals + CNN



- **Regions**: ~2000 Selective Search proposals
- Network: AlexNet pre-trained on ImageNet (1000 classes), fine-tuned on PASCAL (21 classes)
- **Final detector**: warp proposal regions, extract fc7 network activations (4096 dimensions), classify with linear SVM
- Bounding box regression to refine box locations
- Performance: mAP of 53.7% on PASCAL 2010 (vs. 35.1% for Selective Search and 33.4% for Deformable Part Models)

R-CNN: Region proposals + CNN

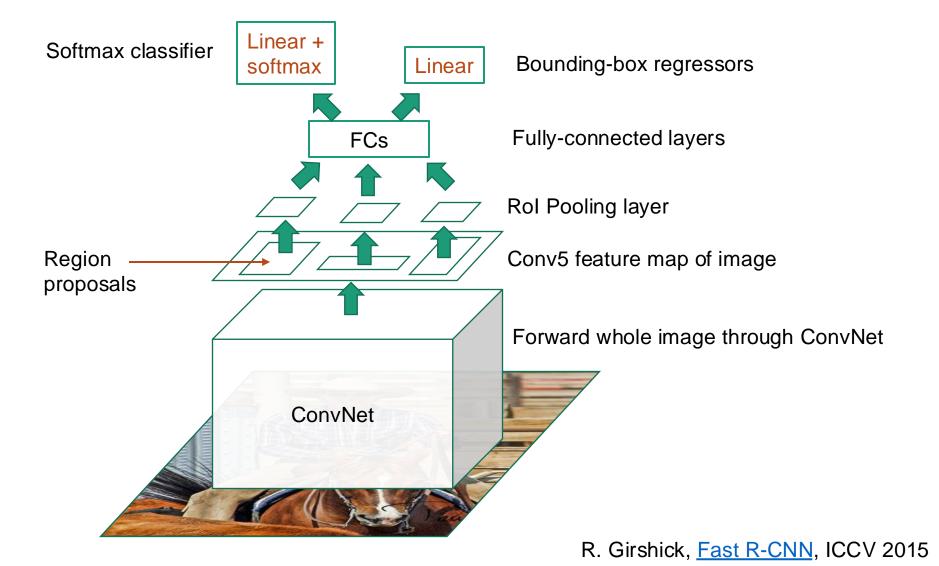
• Pros

- Much more accurate than previous approaches!
- Any deep architecture can immediately be "plugged in"

Cons

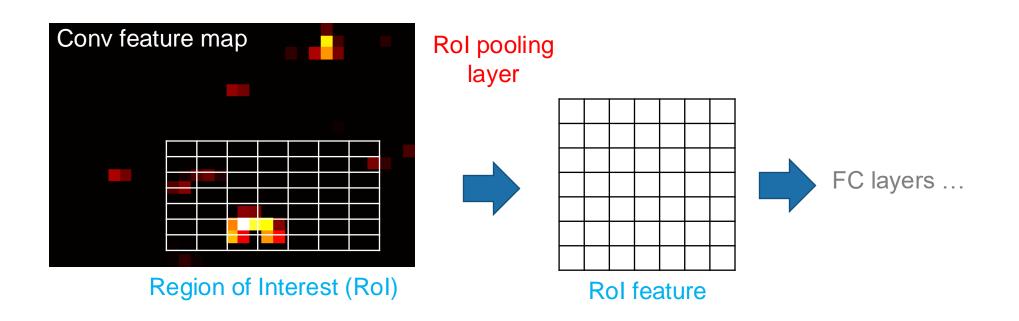
- Not a single end-to-end system
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
- Training was slow (84h), took up a lot of storage
 - 2000 CNN passes per image
- Inference (detection) was slow (47s / image with VGG16)

Fast R-CNN



Rol pooling

"Crop and resample" a fixed-size feature representing a region of interest out of the outputs of the last conv layer

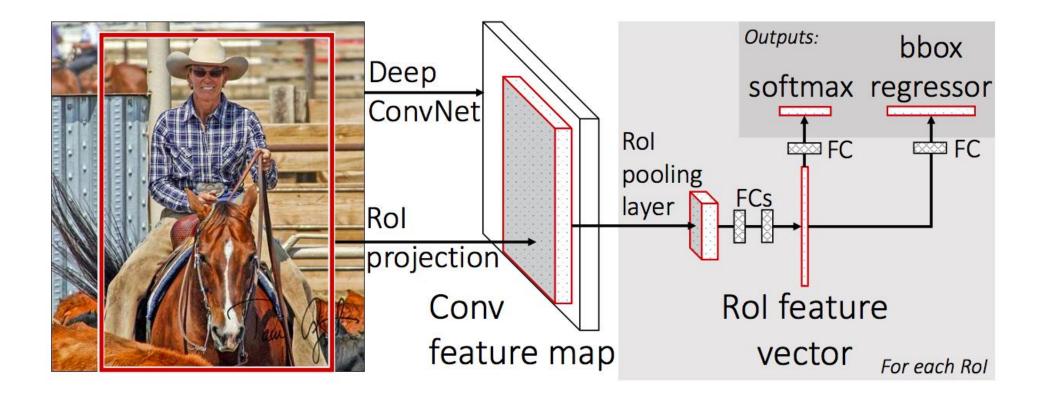


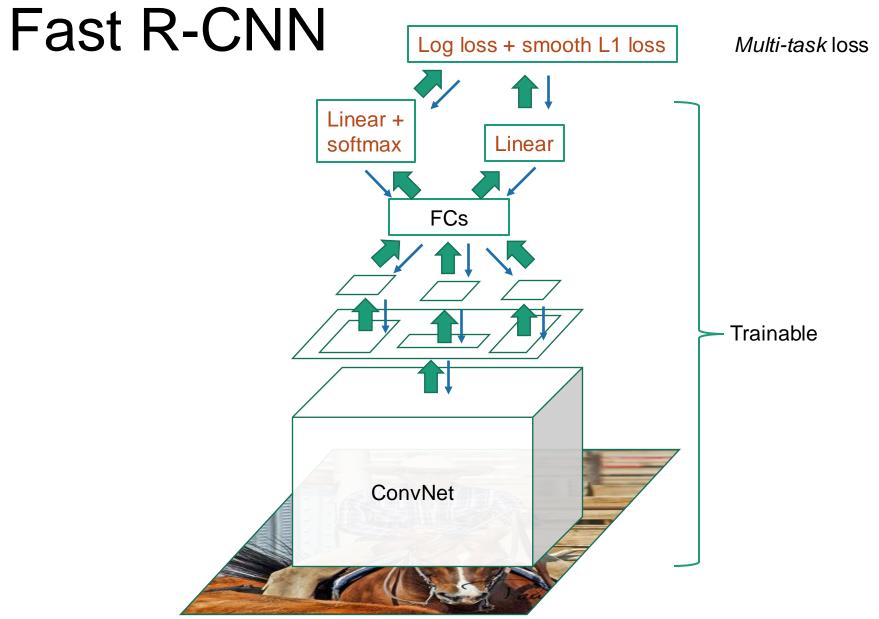
Rol pooling

input									
0.88	0.44	0.14	0.16	0.37	0.77	0.96	0.27		
0.19	0.45	0.57	0.16	0.63	0.29	0.71	0.70		
0.66	0.26	0.82	0.64	0.54	0.73	0.59	0.26		
0.85	0.34	0.76	0.84	0.29	0.75	0.62	0.25		
0.32	0.74	0.21	0.39	0.34	0.03	0.33	0.48		
0.20	0.14	0.16	0.13	0.73	0.65	0.96	0.32		
0.19	0.69	0.09	0.86	0.88	0.07	0.01	0.48		
0.83	0.24	0.97	0.04	0.24	0.35	0.50	0.91		

Fast R-CNN

For each RoI, network predicts probabilities for C + 1 classes (class 0 is background) and four bounding box offsets for C classes

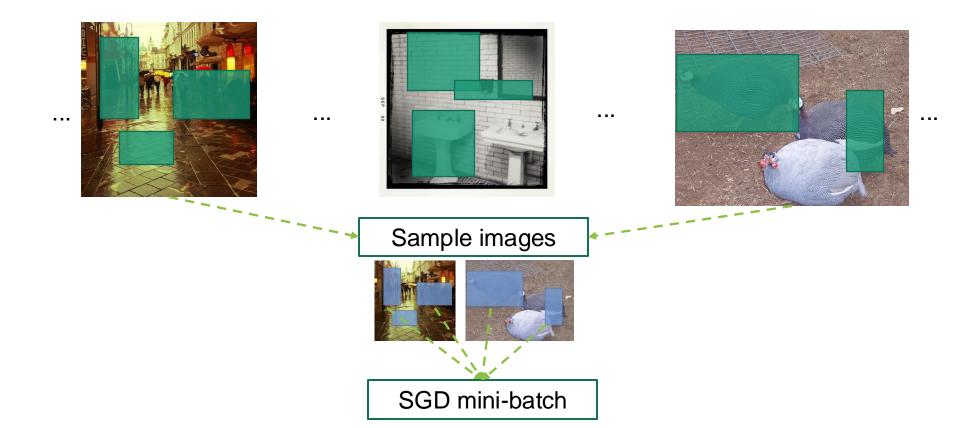




R. Girshick, Fast R-CNN, ICCV 2015

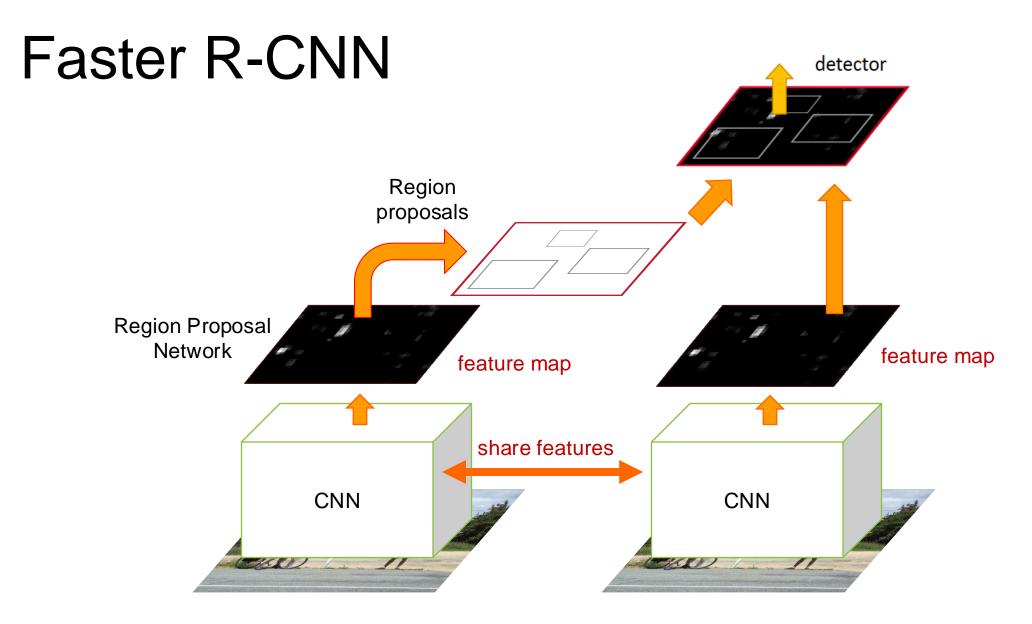
Mini-batch sampling

- Sample a few images (e.g., 2)
- Sample many regions from each image (64)



Fast R-CNN results with VGG16

	Fast R-CNN	R-CNN
Train time (h)	9.5	84
- Speedup	8.8x	
Test time / image	0.32s	47.0s
- Test speedup	146x	
mAP	66.9%	66.0%

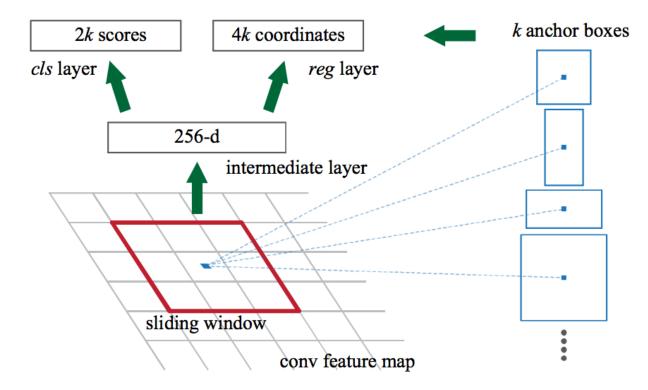


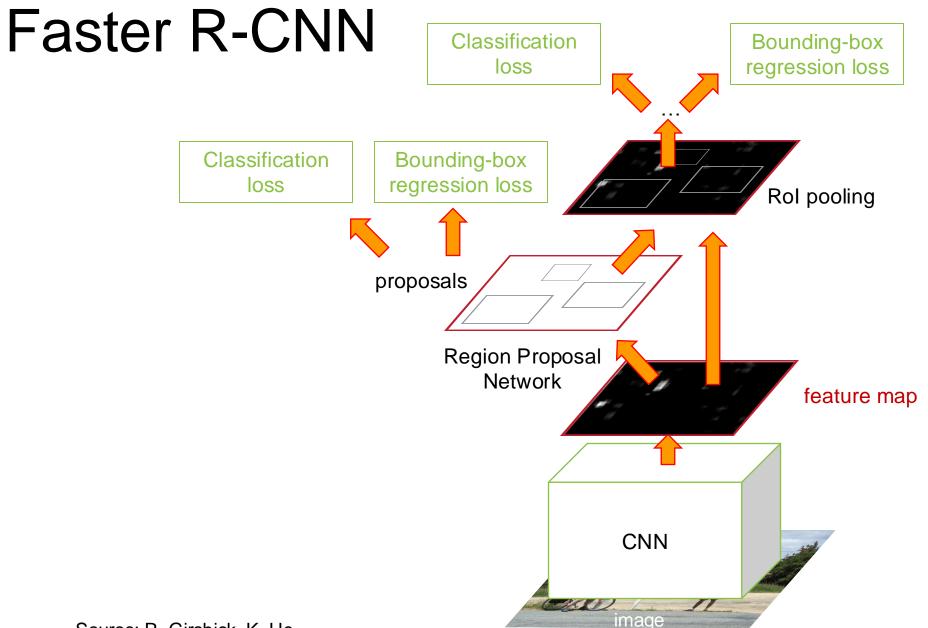
Ren, et al., NIPS 2015

Region proposal network (RPN)

Slide a small window (3x3) over the conv5 layer

- Predict object/no object
- Regress bounding box coordinates with reference to anchors (3 scales x 3 aspect ratios)





Source: R. Girshick, K. He

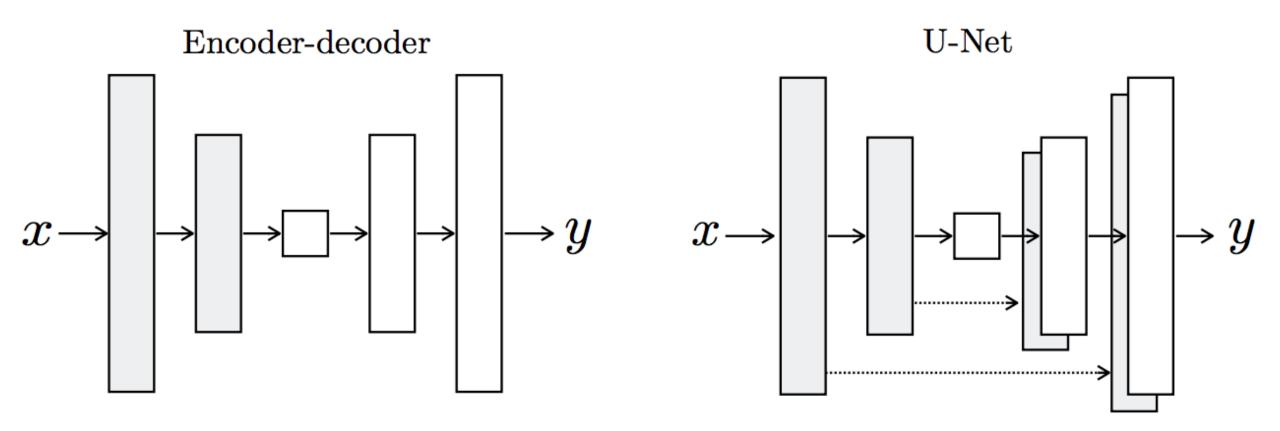
Faster R-CNN results

system	time	07 data	07+12 data
R-CNN	~50s	66.0	-
Fast R-CNN	~2s	66.9	70.0
Faster R-CNN	198ms	69.9	73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

FPN

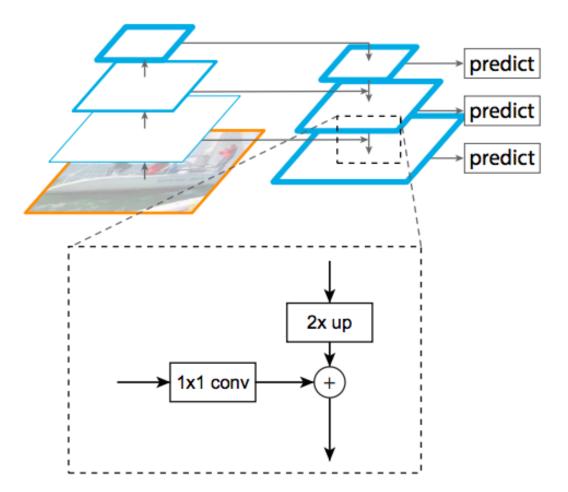
Feature pyramid networks



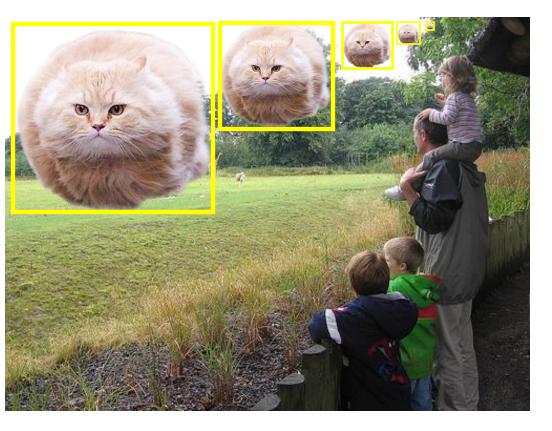
https://phillipi.github.io/pix2pix/

Feature pyramid networks

- Improve predictive power of lower-level feature maps by adding contextual information from higherlevel feature maps
- Predict different sizes of bounding boxes from different levels of the pyramid (but share parameters of predictors)



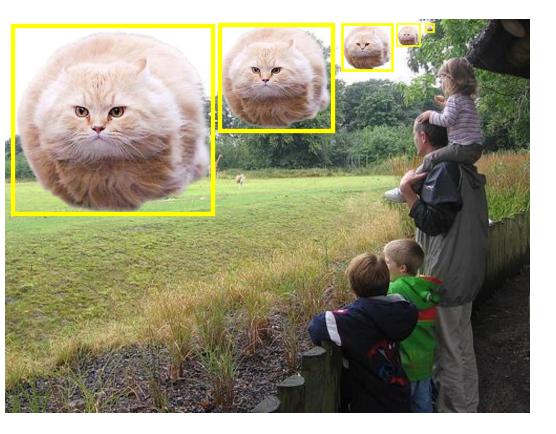
Feature pyramid networks

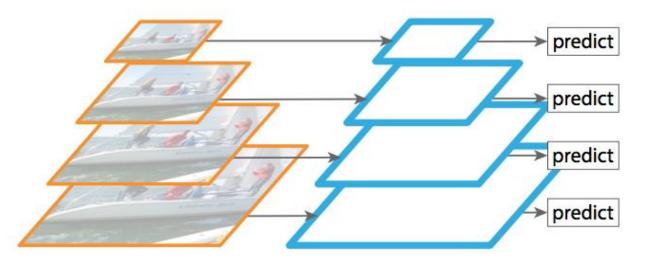


Detectors need to 1. classify and 2. localize objects over a wide range of scales

FPN improves this ability

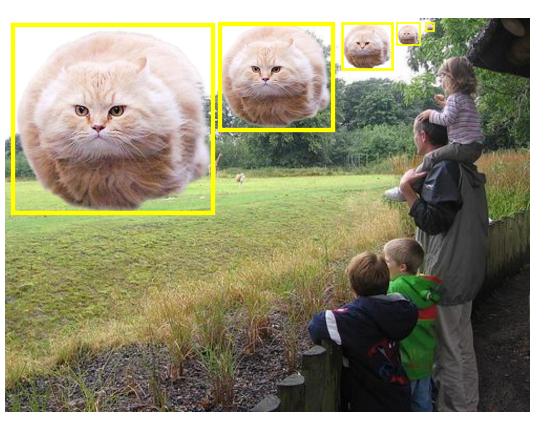
Strategy 1: Image Pyramid

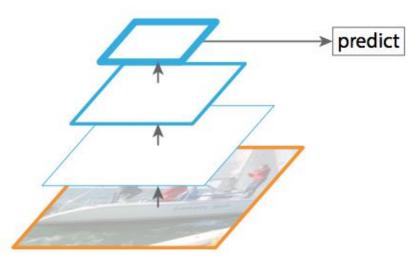




(a) Featurized image pyramid
Standard solution – slow!
(E.g., Viola & Jones, HOG, DPM, SPP-net, multi-scale Fast R-CNN, ...)

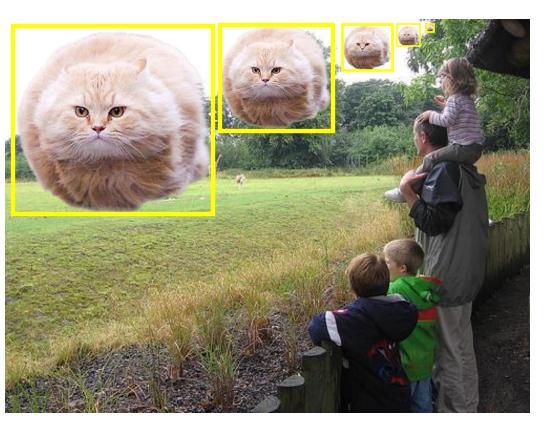
Strategy 2: Multi-scale Features (Singlescale Map)

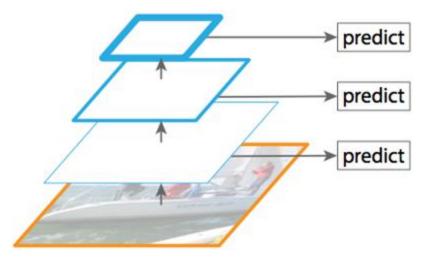




(b) Single feature map
Leave it all to the features – *fast, suboptimal*(E.g., Fast/er R-CNN, YOLO, ...)

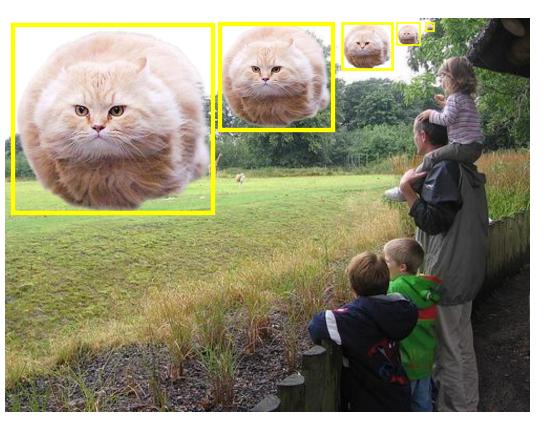
Strategy 3: Naïve In-network Pyramid

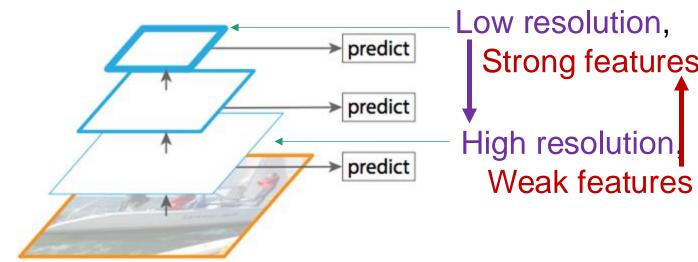




(c) Pyramidal feature hierarchy Use the internal pyramid – *fast, suboptimal* (E.g., \approx SSD, ...)

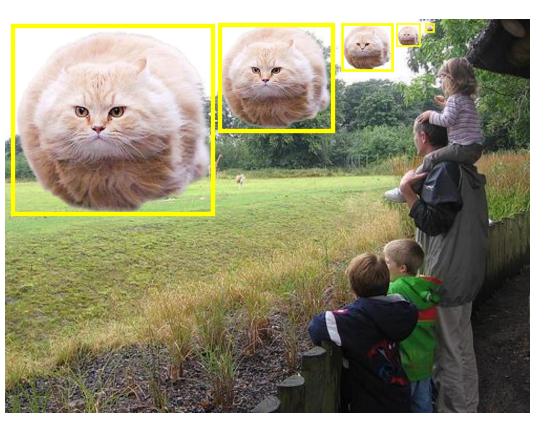
Strategy 3: Naïve In-network Pyramid

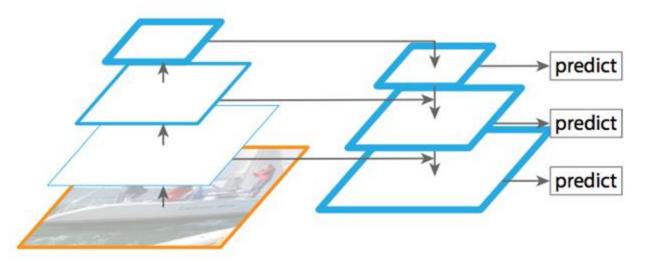




(c) Pyramidal feature hierarchy Use the internal pyramid – *fast, suboptimal* (E.g., \approx SSD, ...)

Strategy 4: Feature Pyramid Network



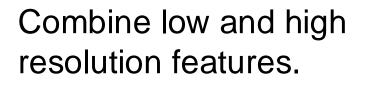


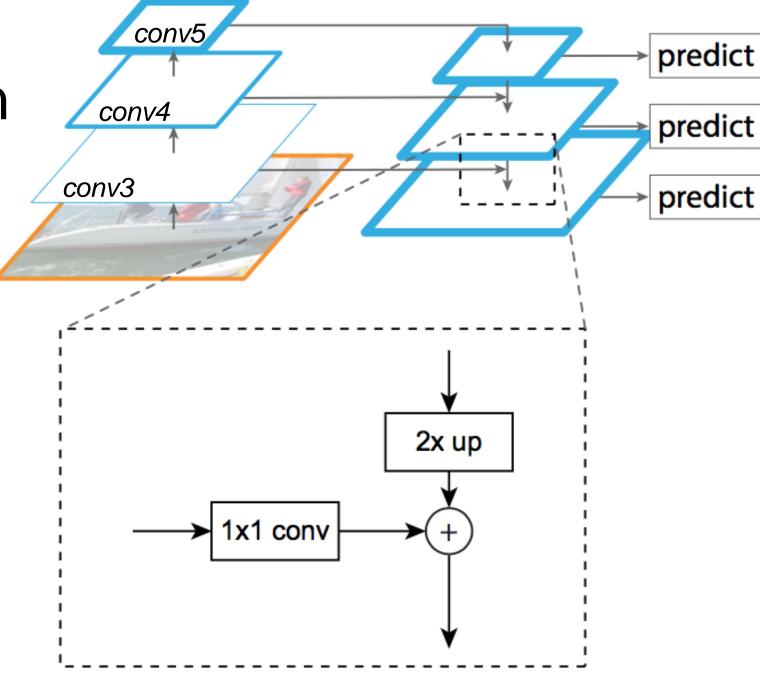
(d) Feature Pyramid Network

Top-down enrichment of high-res features – *fast, less suboptimal*

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

FPN Top-down Refinement Module





Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

Summary

- Background and old fashion object detection
- 2-stage object detection
- FPN