Self-Attention and Transformer

Xiaolong Wang

Previous classes

RNN for time sequence processing

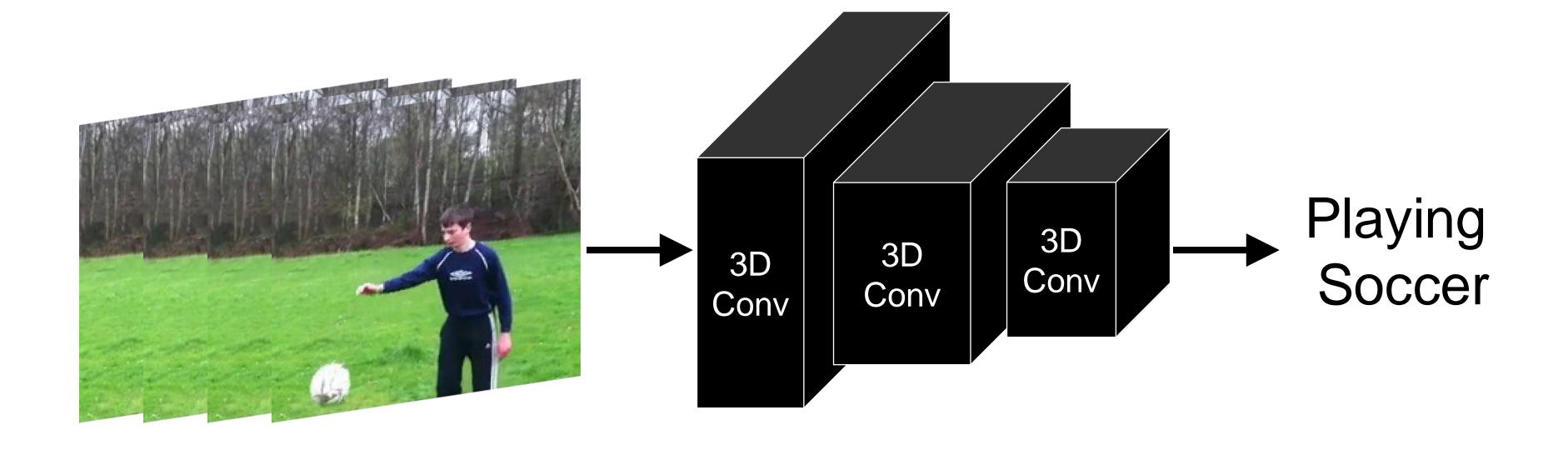
Video understanding with temporal convolution, 3D CNN

This Class

- Non-local Neural Network for Videos
- Self-Attention and Transformer for NLP

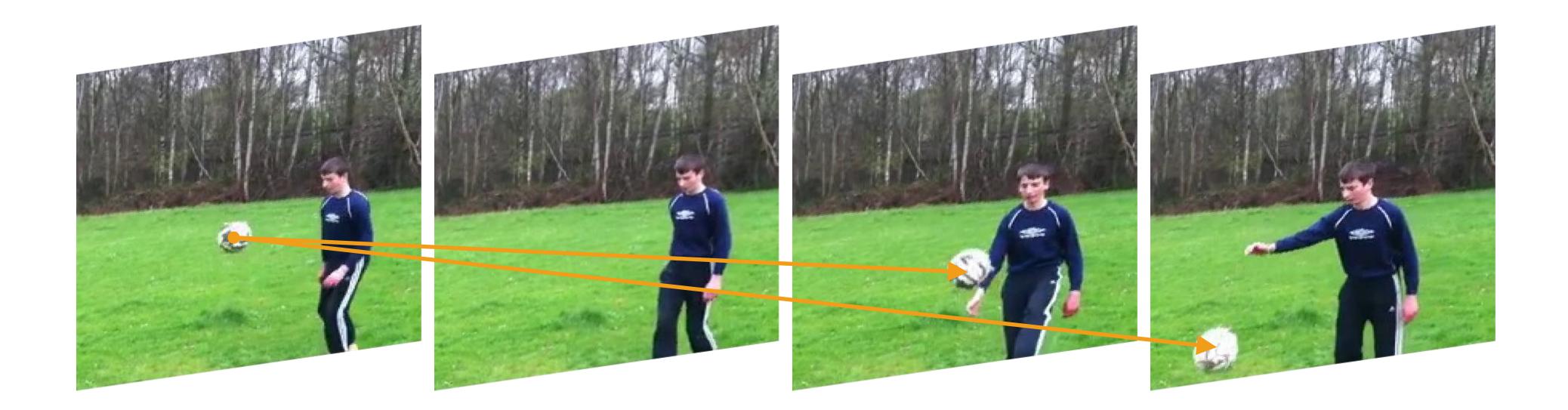
Non-local Neural Network for Videos

Video Recognition



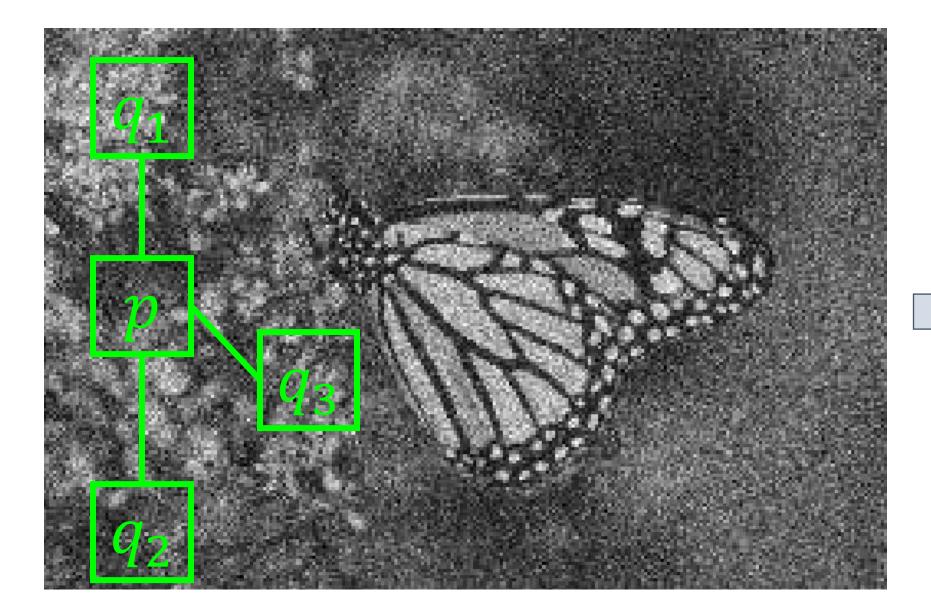
Reasoning for Action Recognition

Long-rang explicit reasoning



Wang et al., 2018.

Non-local Means

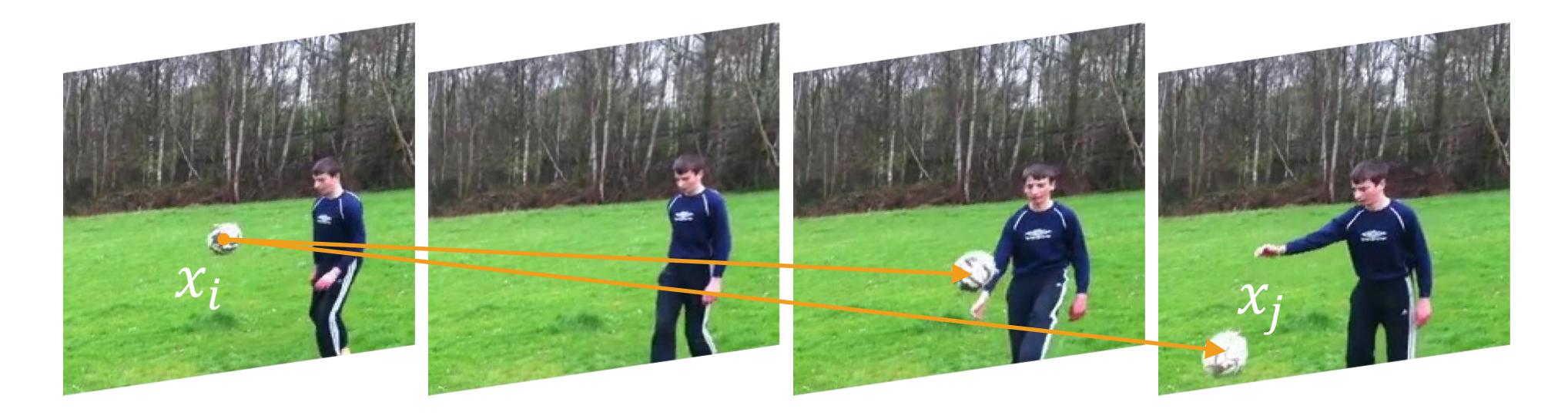


Buades et al., 2005.

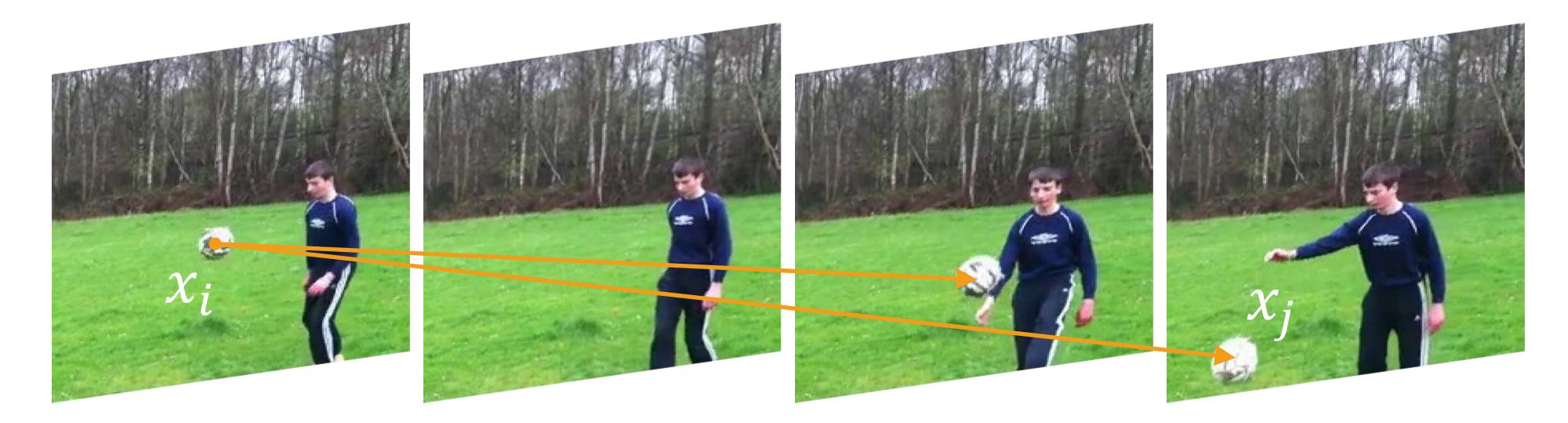
Non-local Operator

Operation in feature space

Can be embedded into any ConvNets

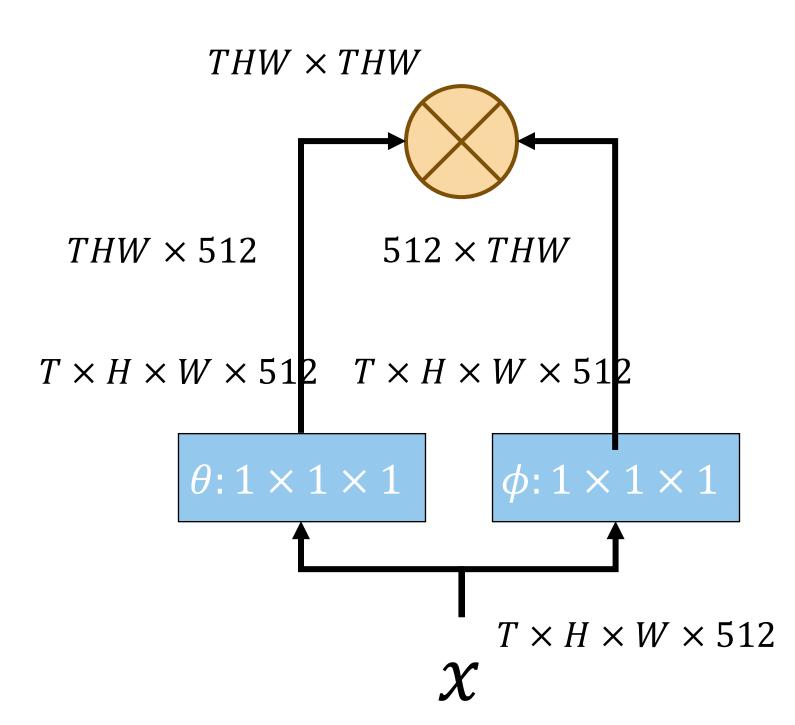


Non-local Operator $y_i = \frac{1}{C(x)} \sum_{\forall j} f(x_i, x_j) g(x_j)$

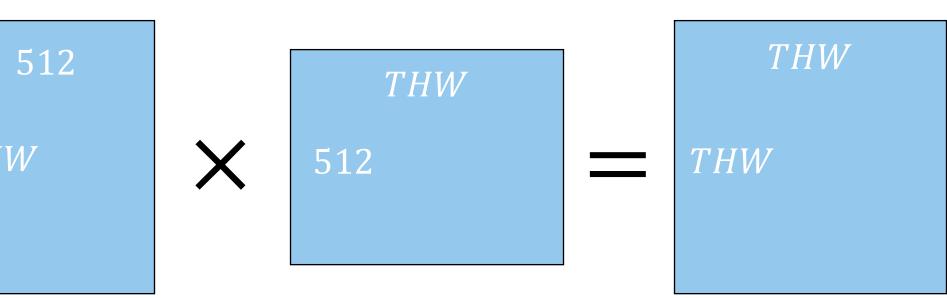


Affinity Features

Non-local Operator $y_i = \frac{1}{C(x)} \sum_{\forall i} f(x_i, x_j) g(x_j)$

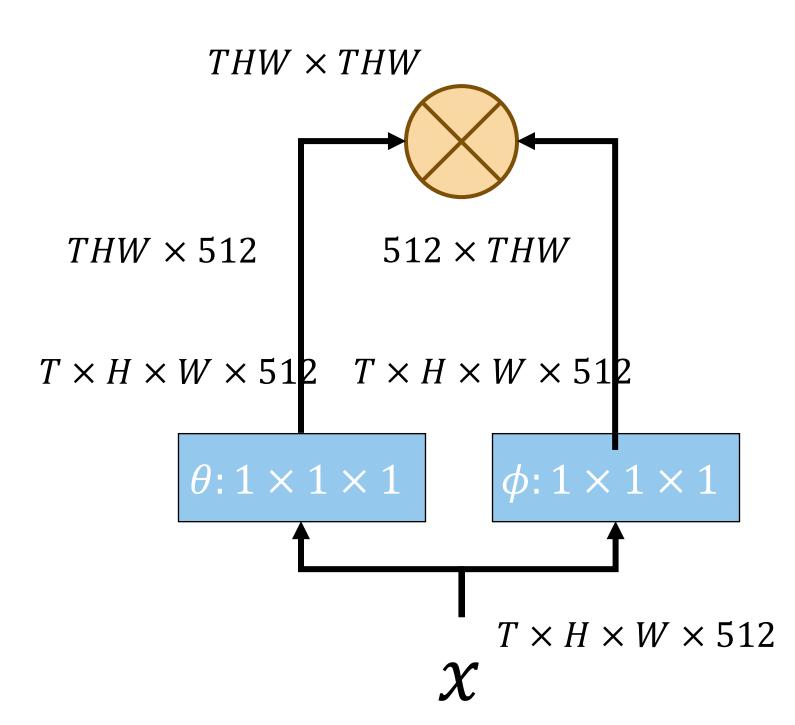


THW

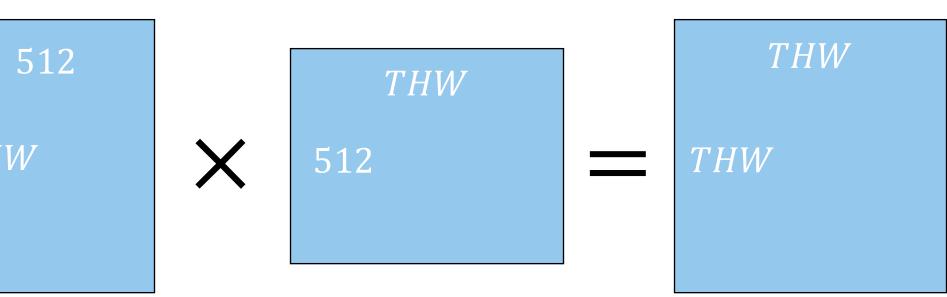


10

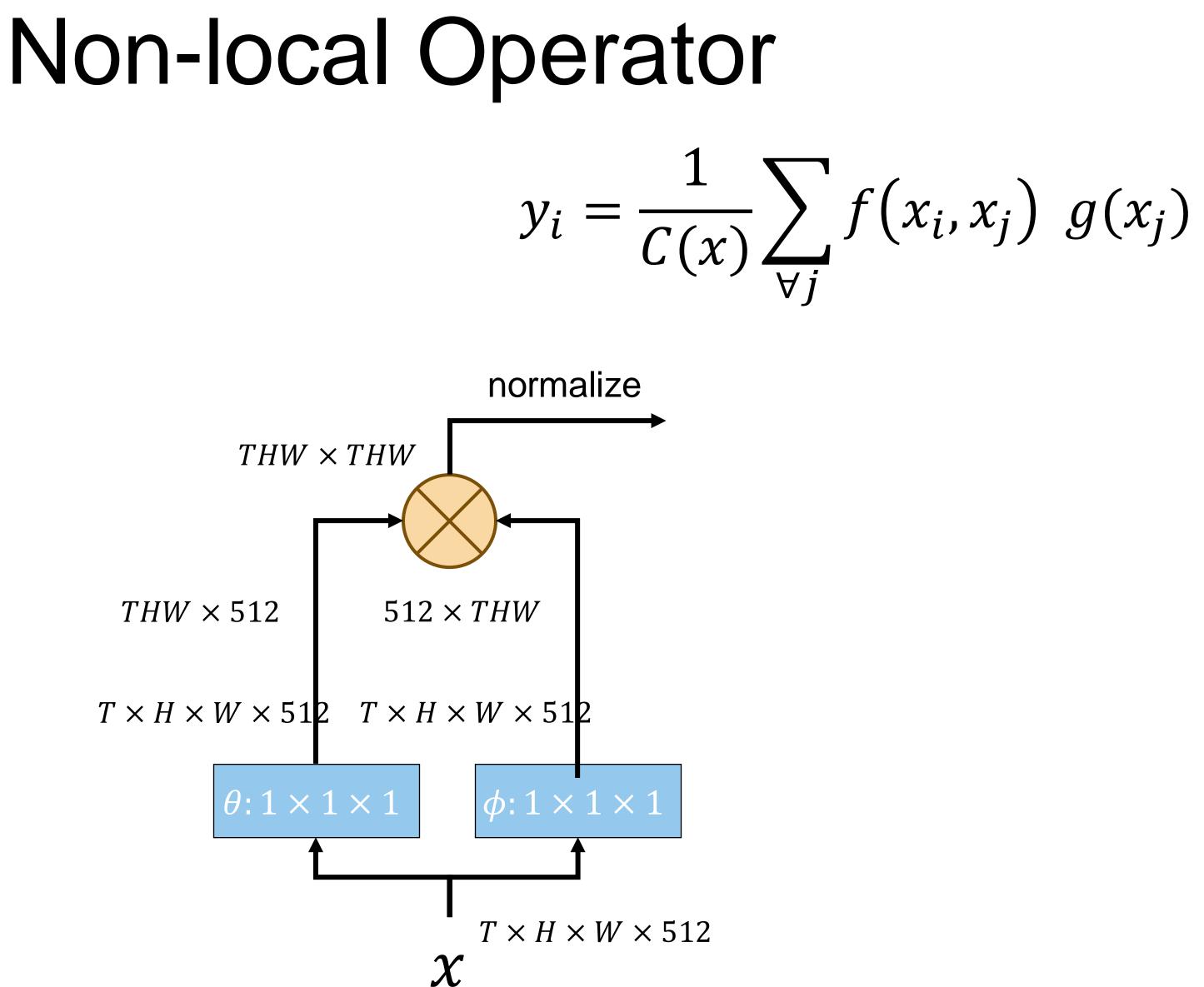
Non-local Operator $y_i = \frac{1}{C(x)} \sum_{\forall i} f(x_i, x_j) g(x_j)$

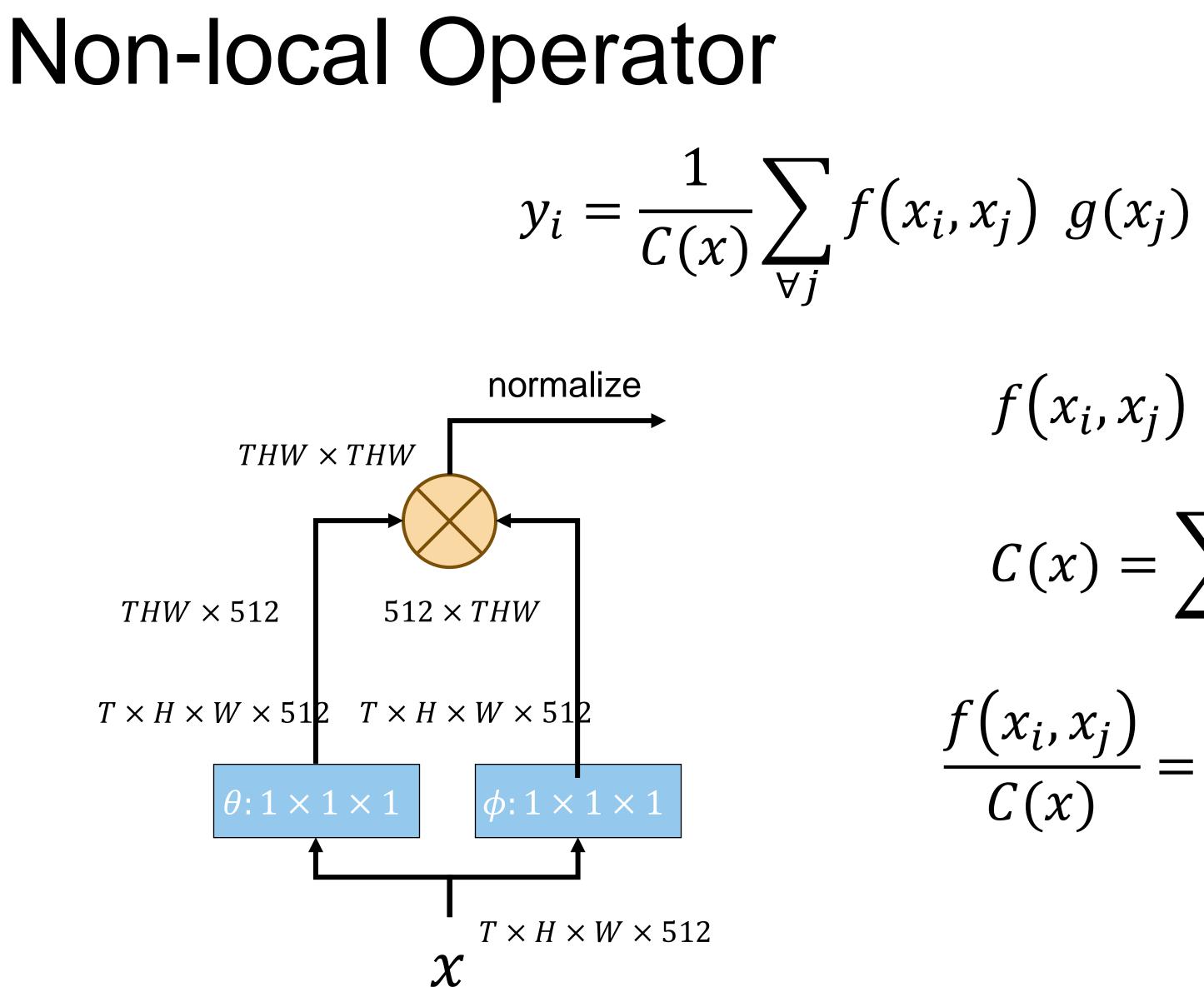


THW

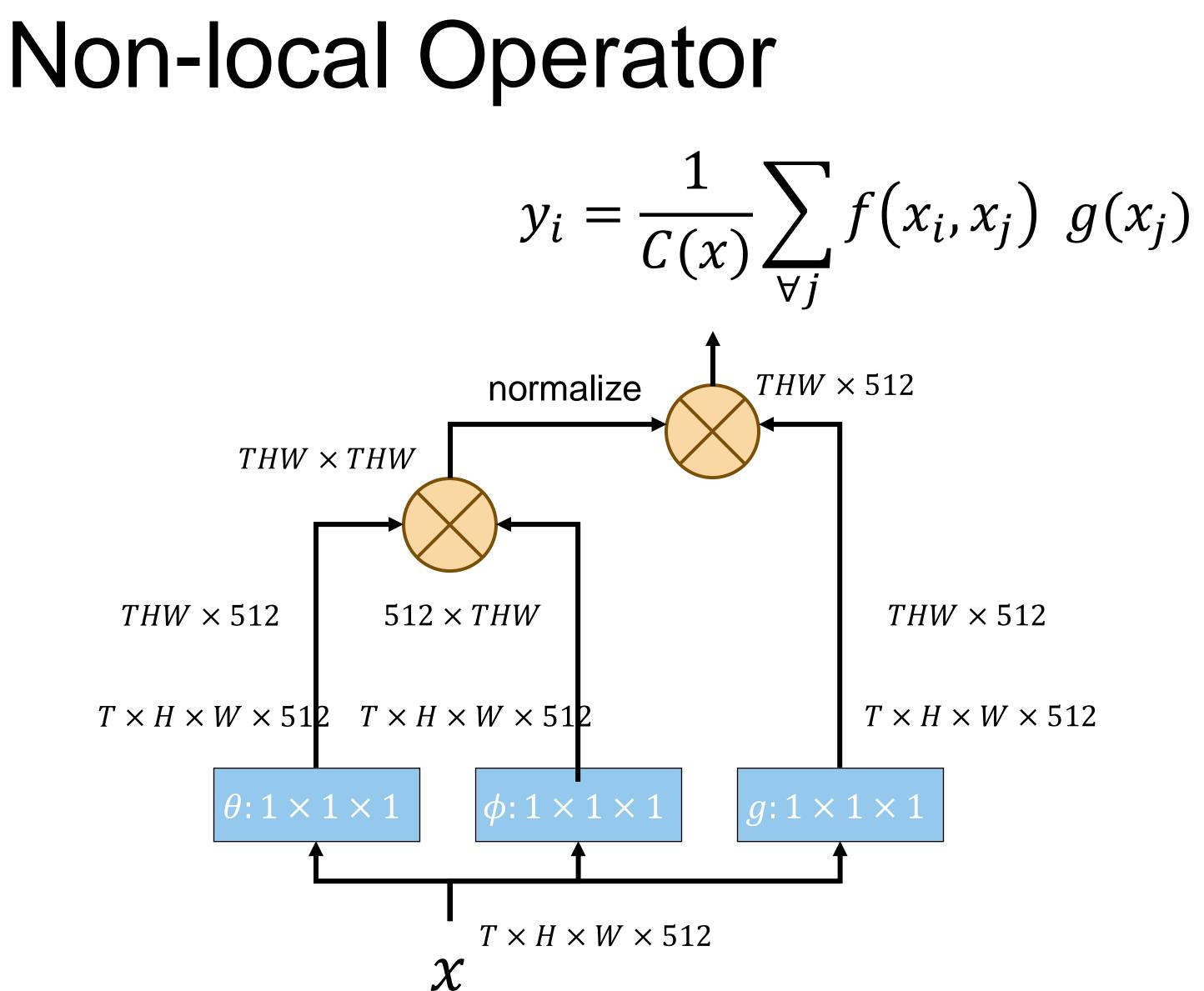


11



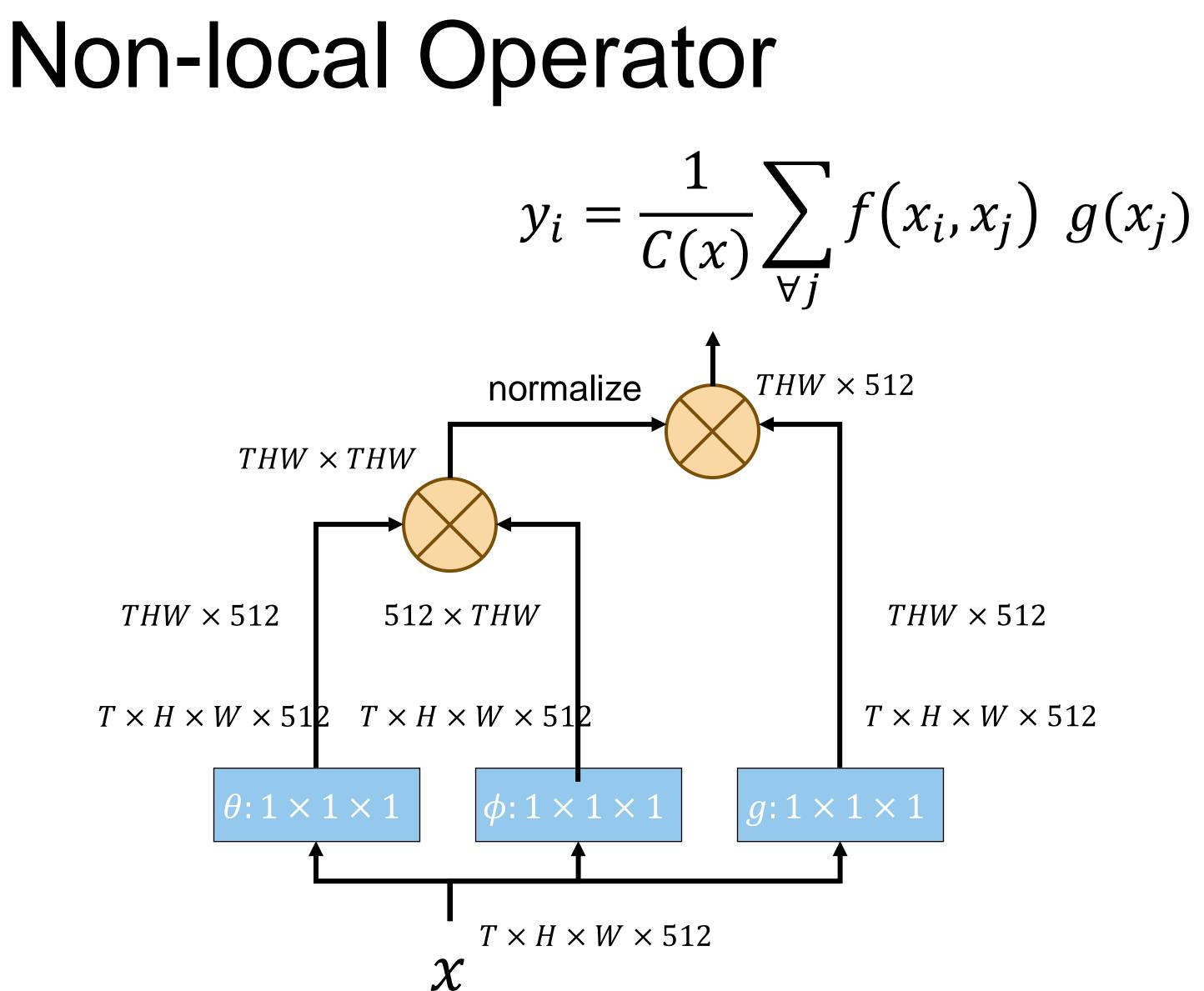


$$f(x_i, x_j) = \exp(x_i^T x_j)$$
$$C(x) = \sum_{\forall j} f(x_i, x_j)$$
$$\frac{f(x_i, x_j)}{C(x)} = \frac{\exp(x_i^T x_j)}{\sum_{\forall j} \exp(x_i^T x_j)}$$



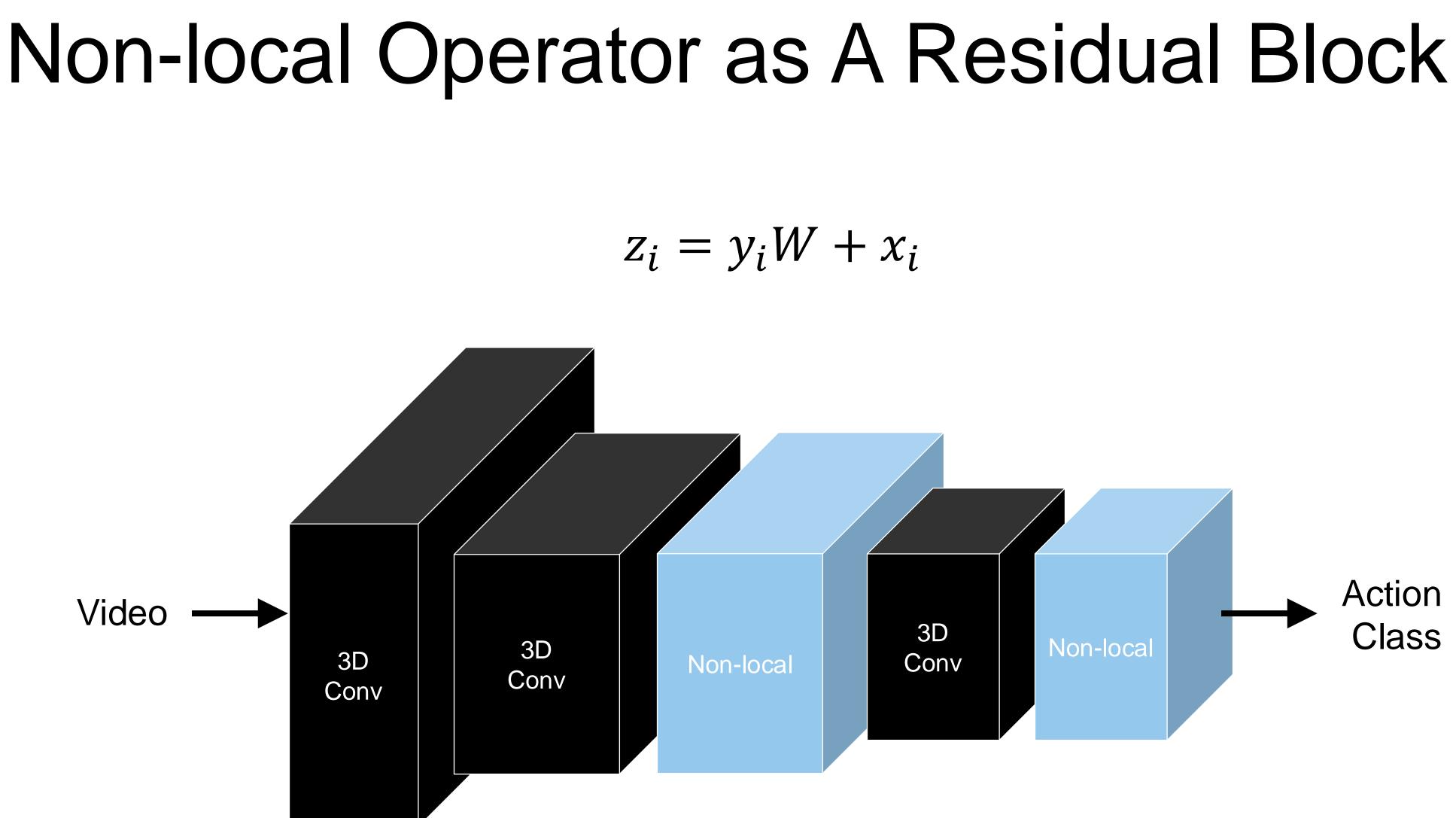
 $THW \times 512$

 $T \times H \times W \times 512$

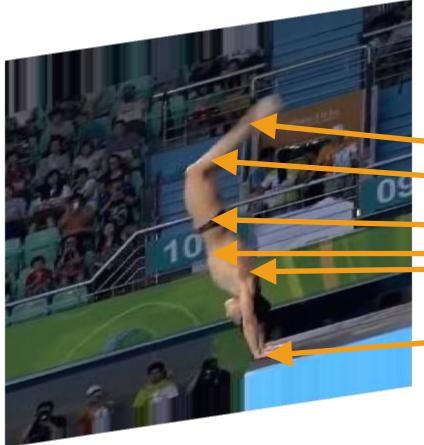


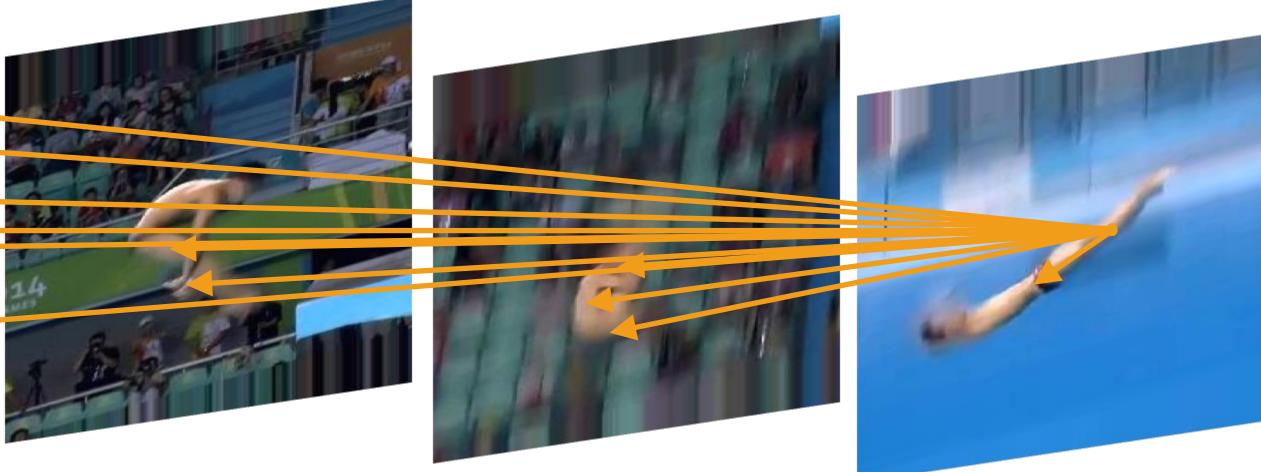
 $THW \times 512$

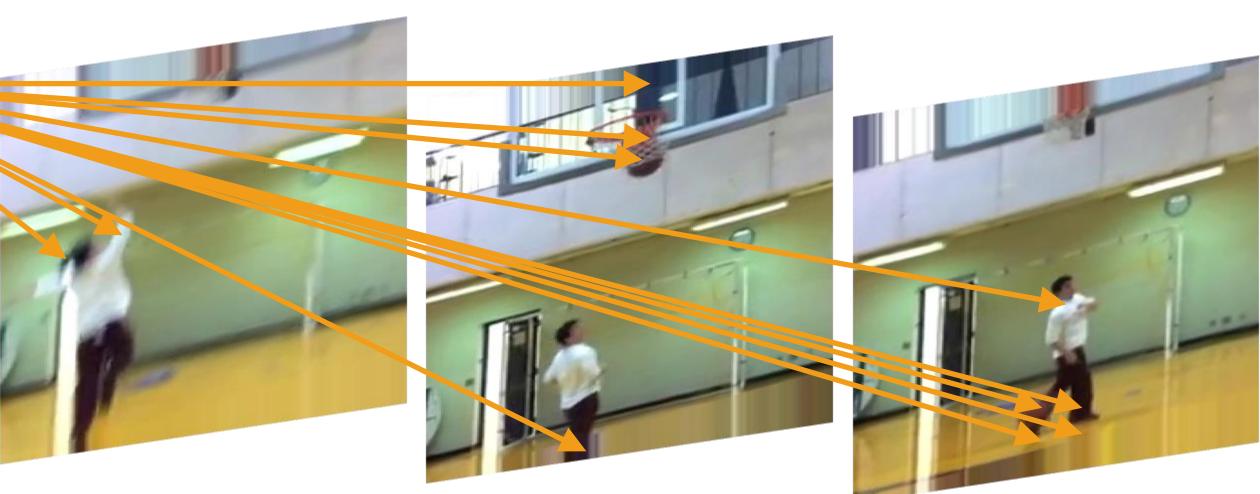
 $T \times H \times W \times 512$



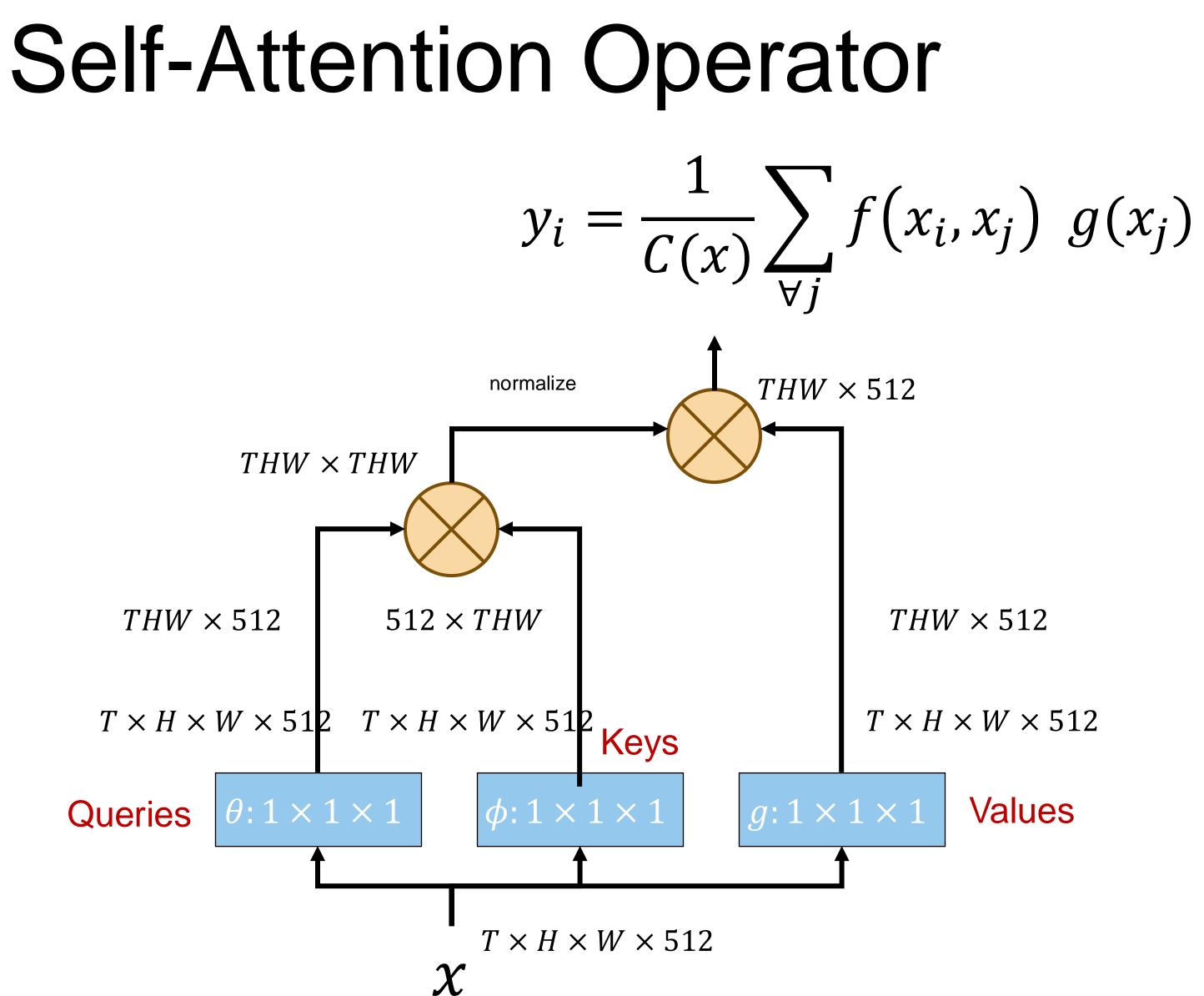
Examples







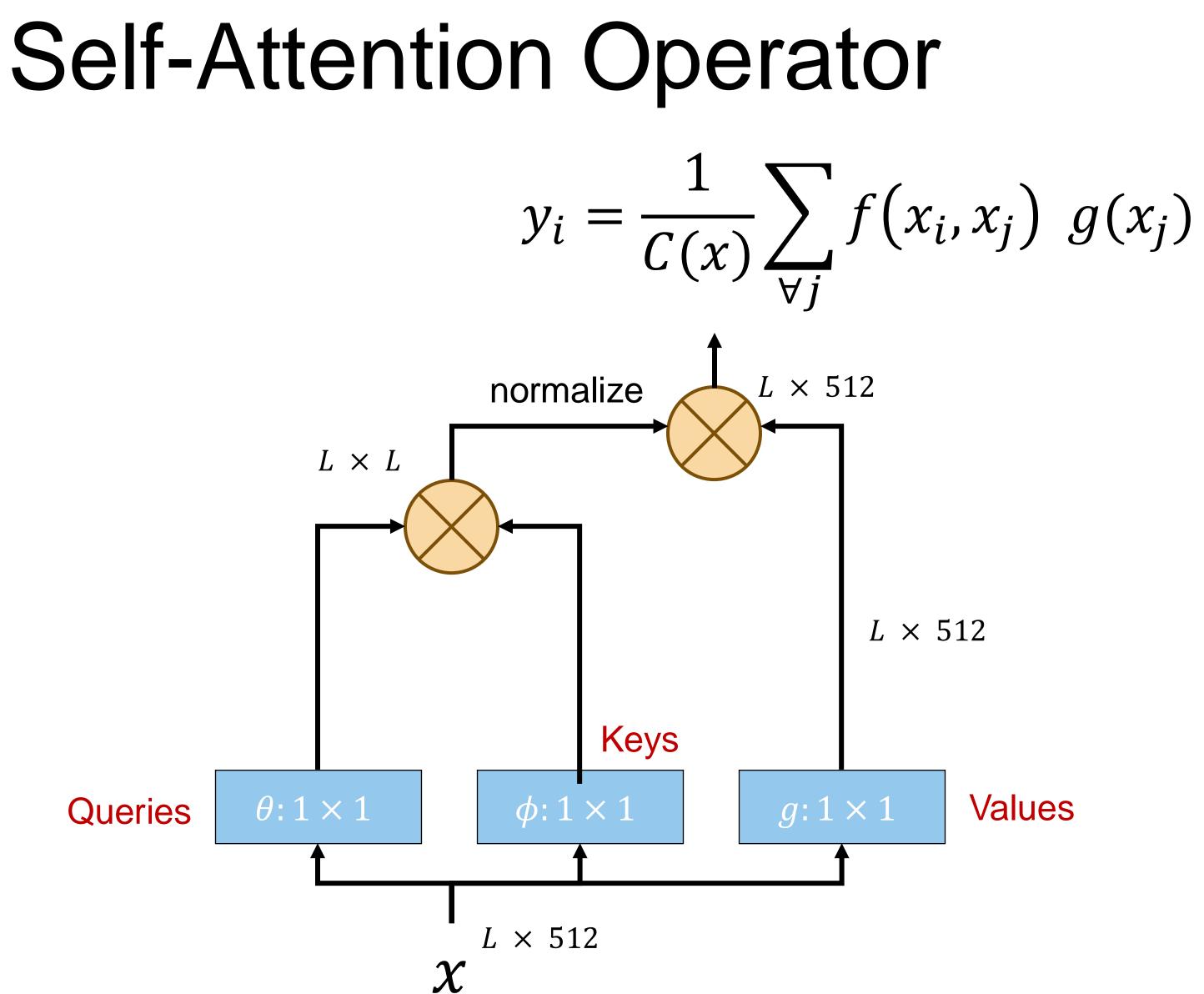
Self-Attention and Transformer for NLP



 $THW \times 512$

 $T \times H \times W \times 512$

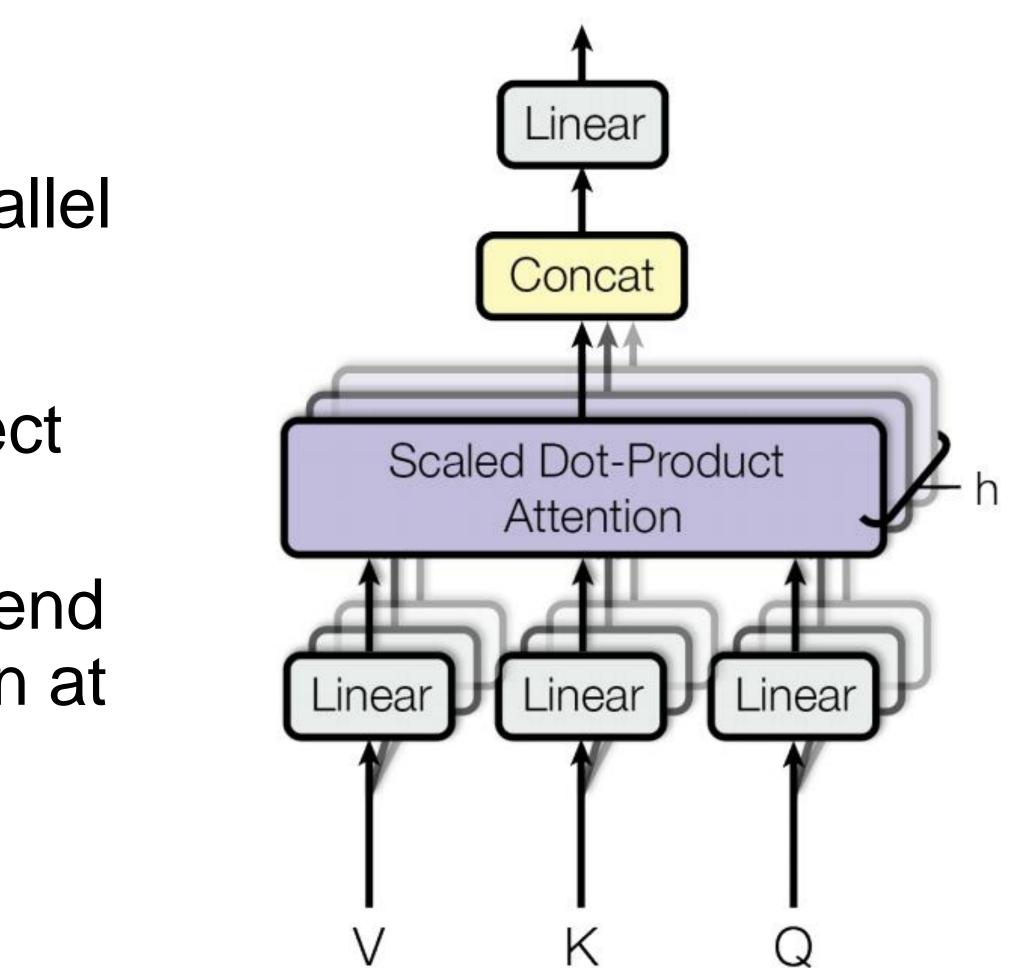
Values



. S . E	this spirit that	a majority of American governments have	passed new laws 2009	the the registration or voting process more difficult	<pre> <cos> <cod> </cod></cos></pre>
. 2. 2 :	this that	a najority of American governments have	passed new laws 2009	the tregistration or or voting process difficult	COS> Cod> Cod> Cod> Cod> Cod> Cod>

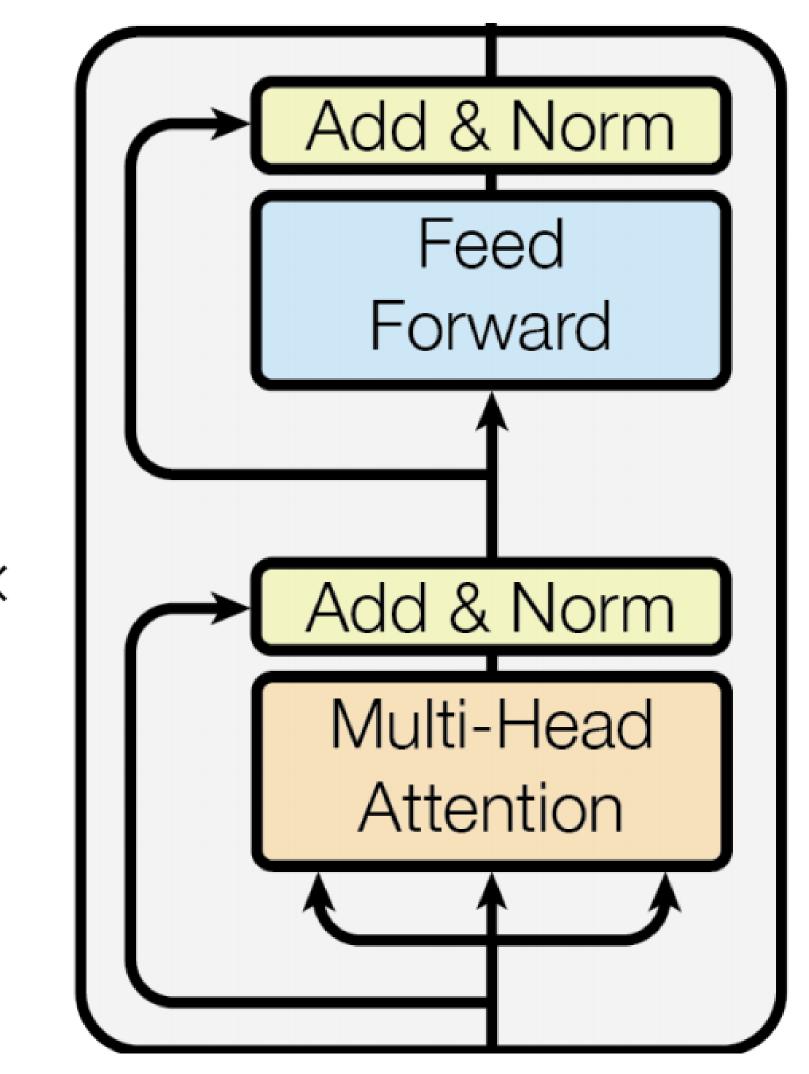
Multi-head attention

- Run h attention models in parallel on top of different linearly projected versions of Q, K, V; concatenate and linearly project the results
- Intuition: enables model to attend to different kinds of information at different positions



Transformer blocks

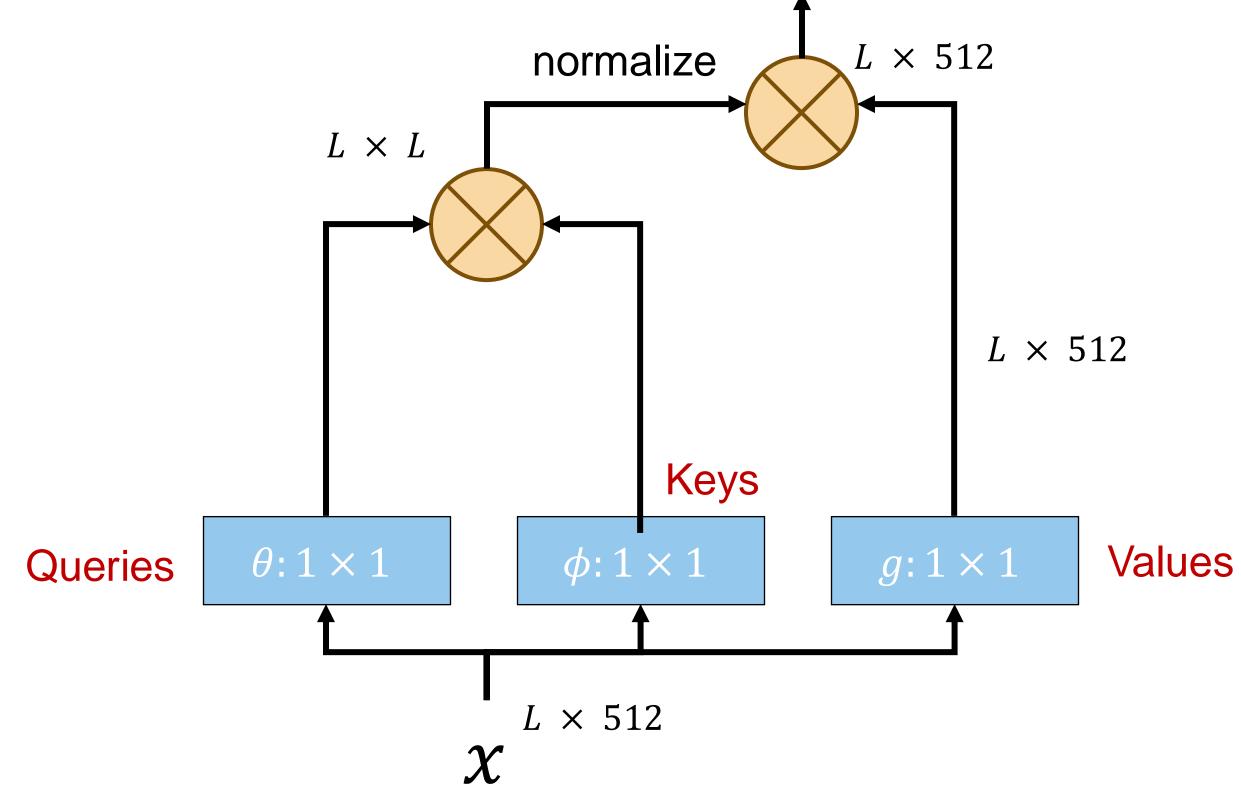
- A **Transformer** is a sequence of transformer blocks
 - Vaswani et al.: N=12 blocks, embedding dimension = 512, 6 attention heads
 - Add & Norm: residual connection followed by <u>layer</u> <u>normalization</u>
 - Feedforward: two linear layers with ReLUs in between, applied independently to each vector
- Attention is the only interaction between inputs!



N×

Positional encoding

Self-attention does not encode the order of the inputs.



 $y_i = \frac{1}{C(x)} \sum_{\forall i} f(x_i, x_j) g(x_j)$

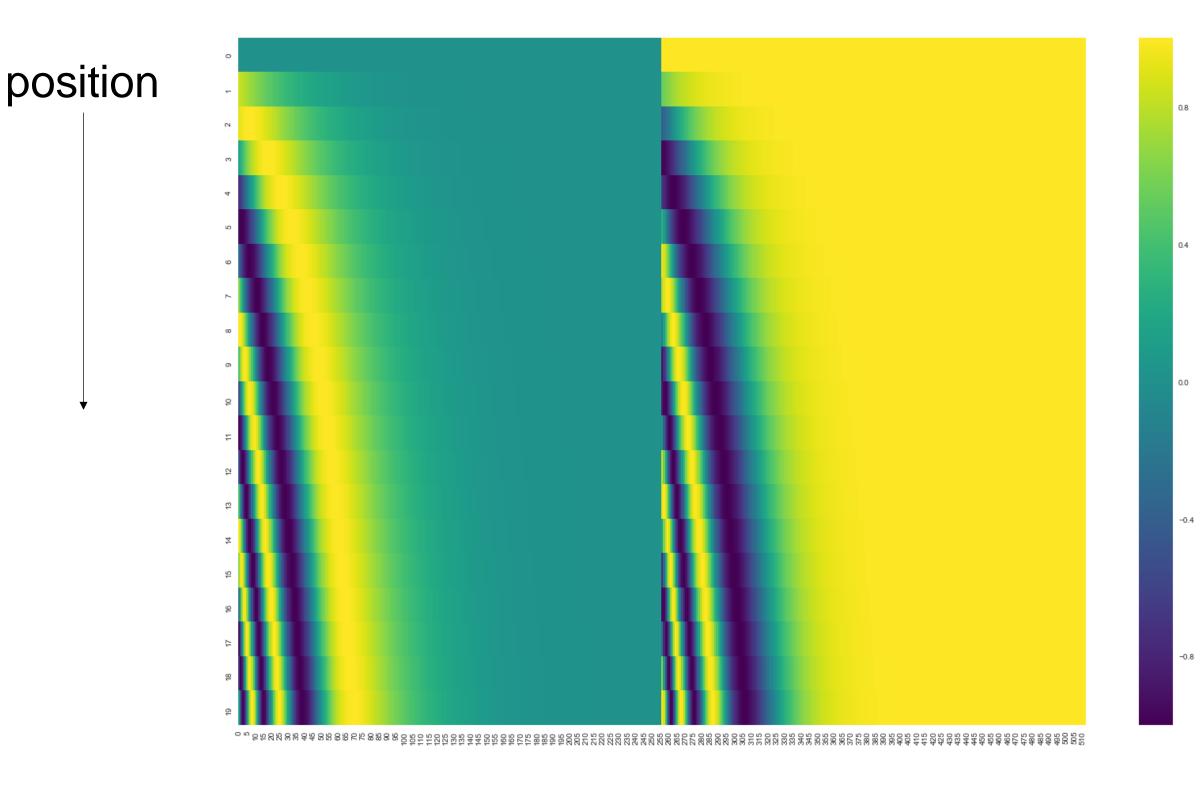
Positional encoding To give transformer information about ordering of tokens, add

function of position (based on sines and cosines) to every input

 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$

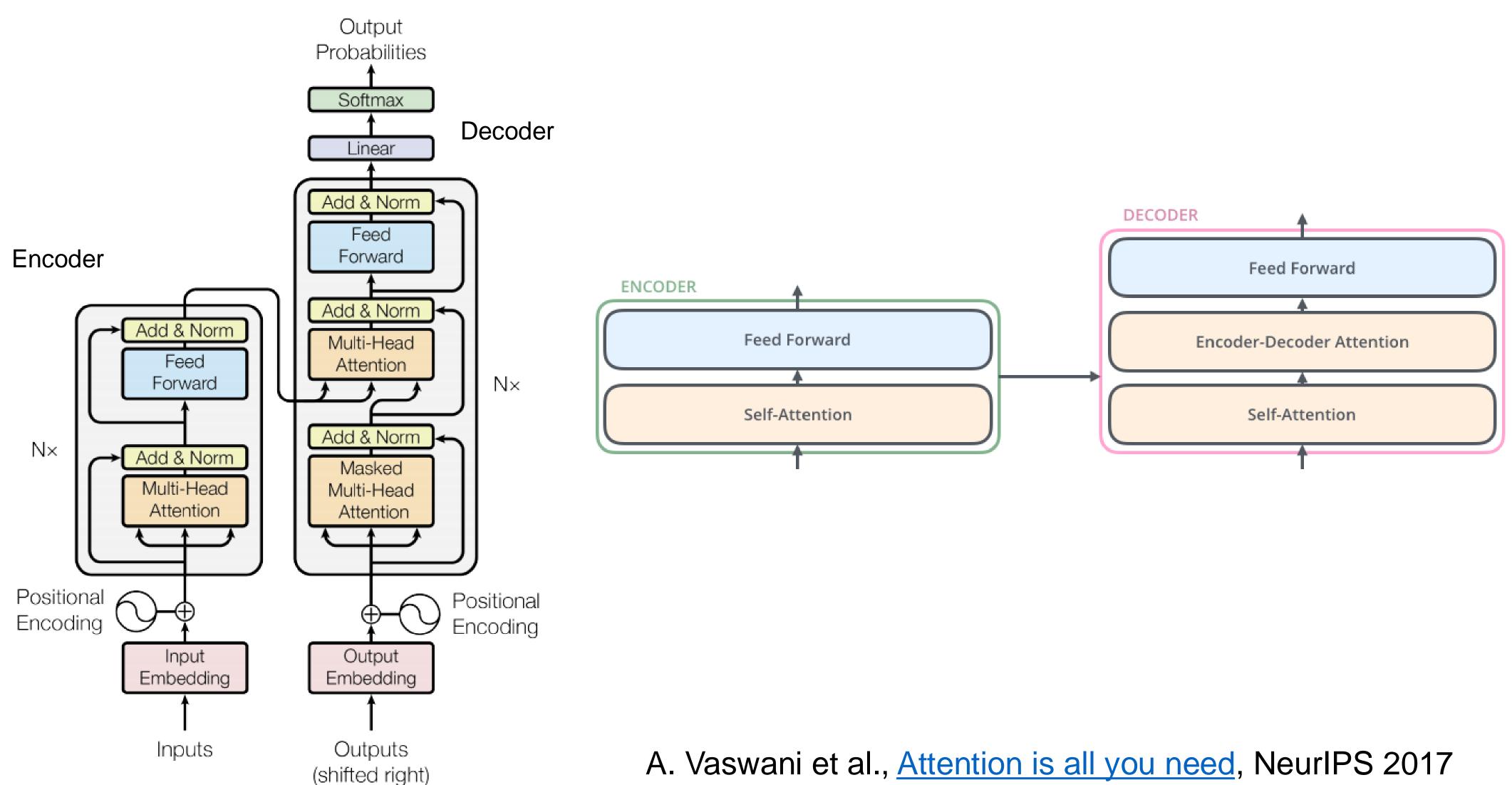
Positional encoding To give transformer information about ordering of tokens, add

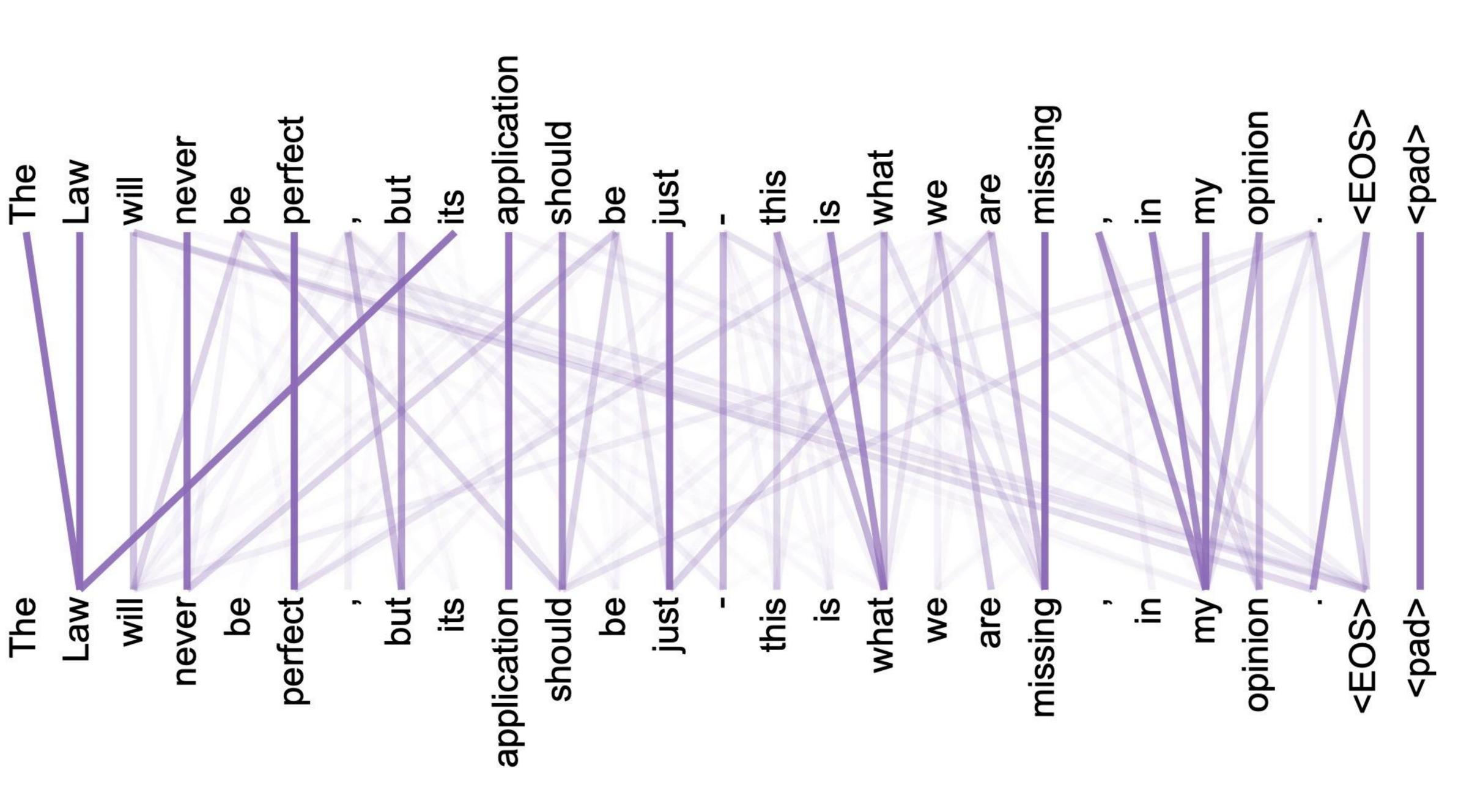
function of position (based on sines and cosines) to every input



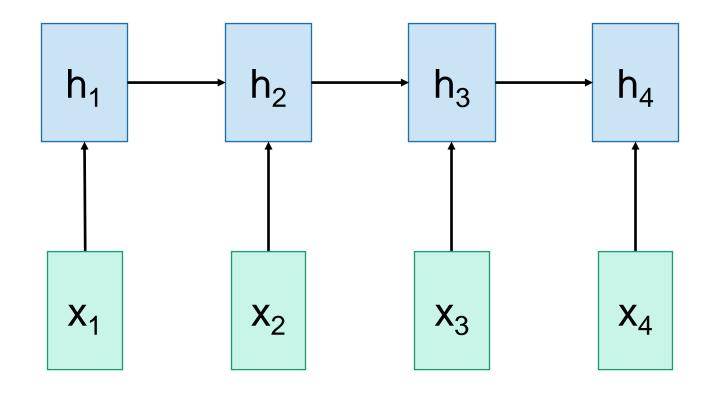
Embedding dimension

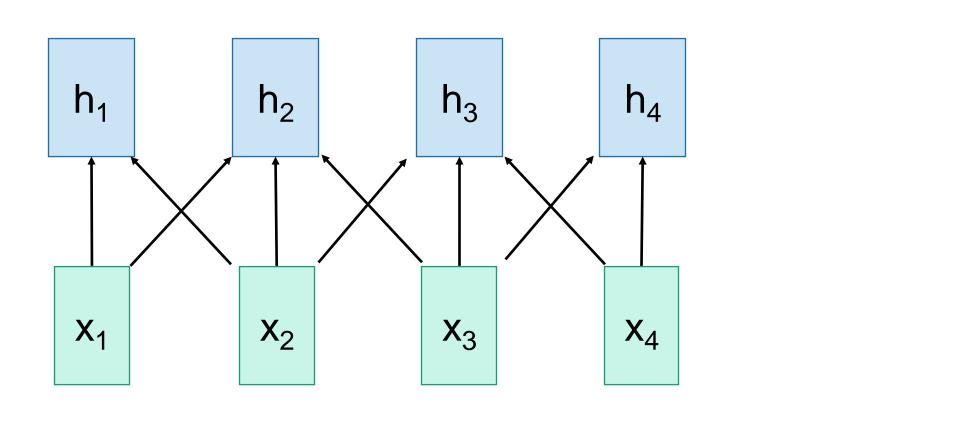
Transformer architecture: Zooming back





Different ways of processing sequences **RNN** 1D convolutional network



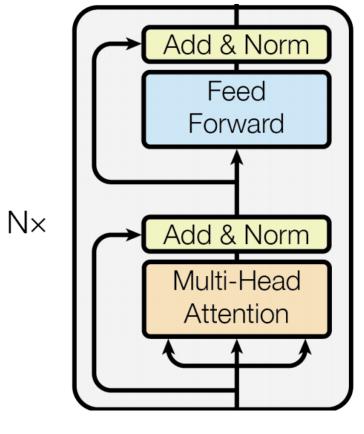


Works on ordered sequences

- Pros: Good at long sequences: • the last hidden vector encapsulates the whole sequence
- Cons: Not parallelizable: need to compute hidden states sequentially

Works on **multidimensional grids** • Con: Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole

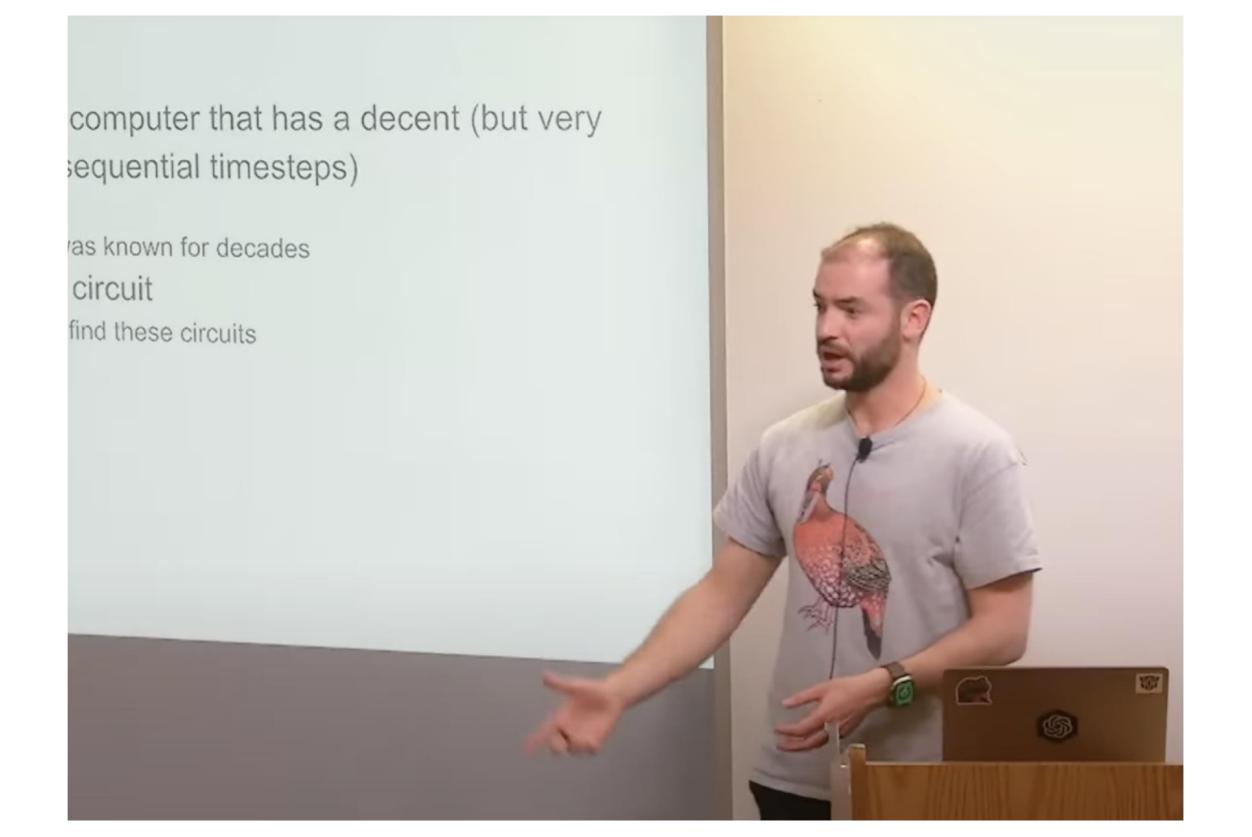
- sequence
- can be computed in parallel



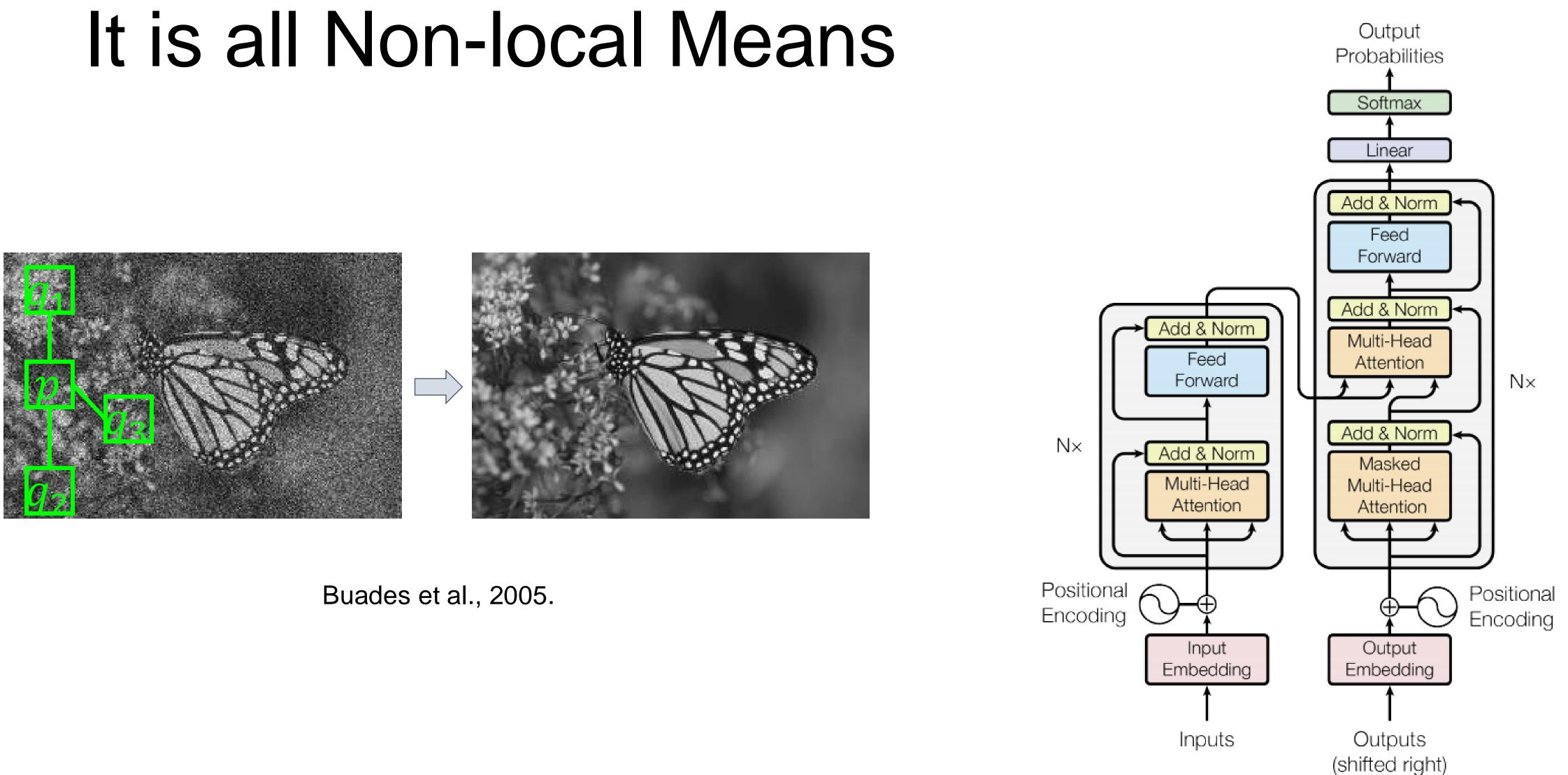
Pro: Highly parallel: Each output

- Works on **sets of vectors**
- Pro: Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- Pro: Highly parallel: Each output can be computed in parallel
- Con: Very memory-intensive

The RNN has a bottleneck, the hidden state. So it has a hard time implementing the transformer. However, had we found a way to engineer a very very large hidden state, perhaps it would become as good as a transformer again.



Ilya Sutskever at Simons

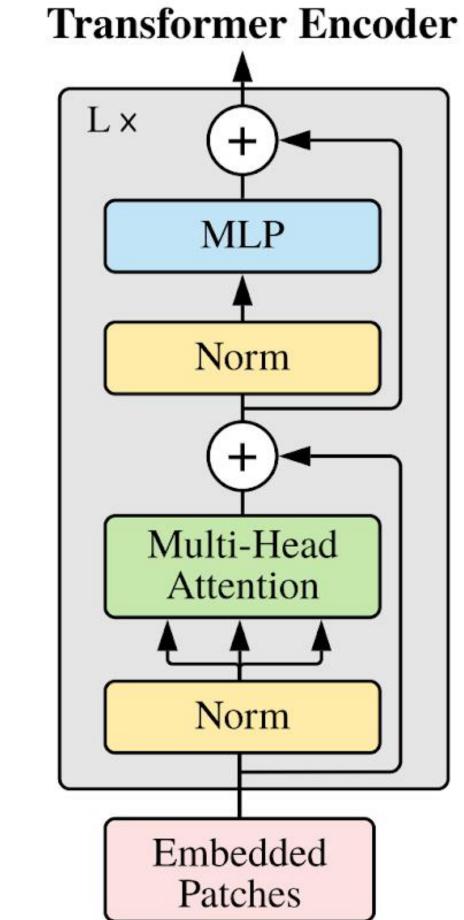


Vision Transformer

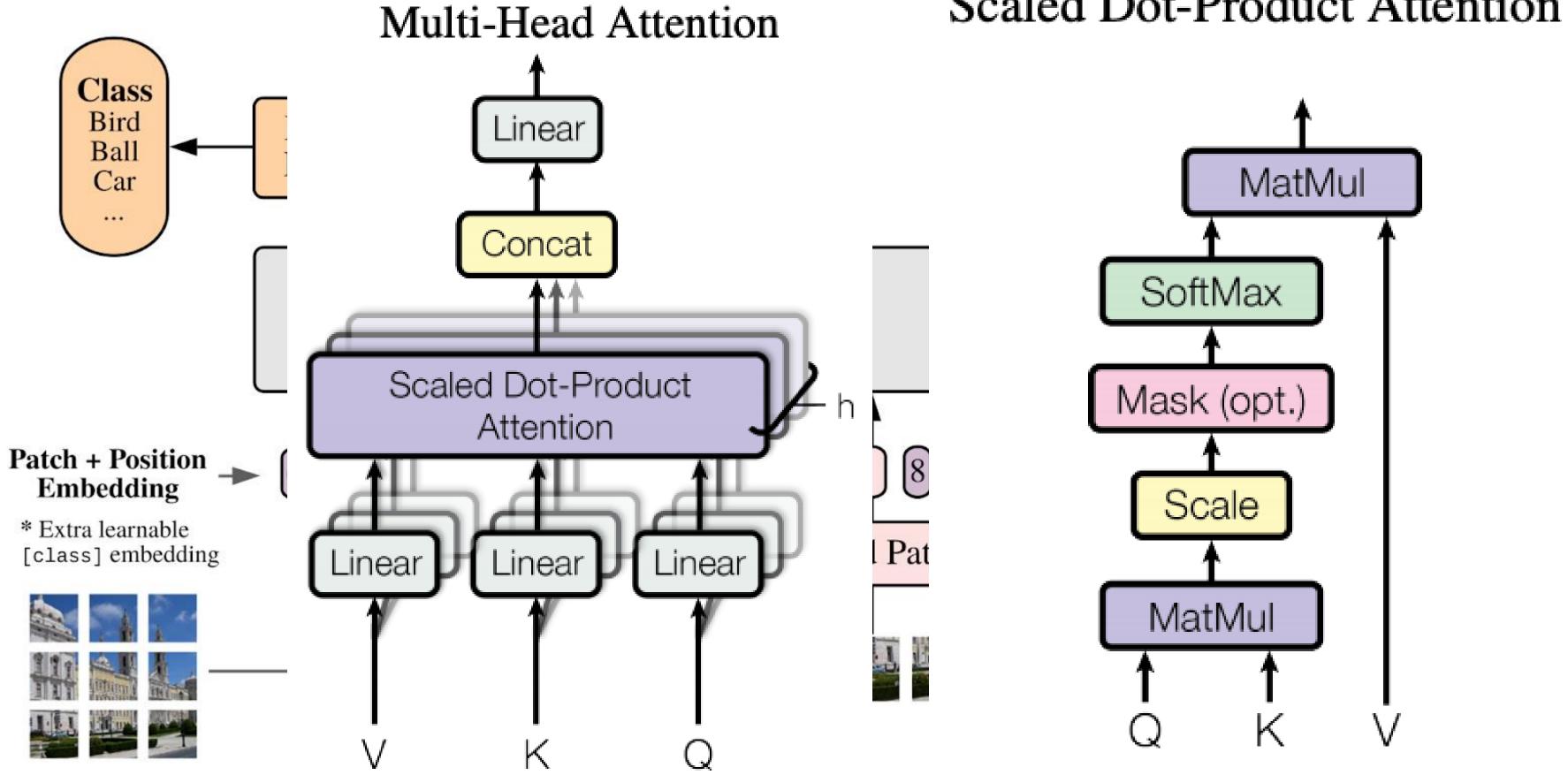
Xiaolong Wang

Vision Transformer (ViT)

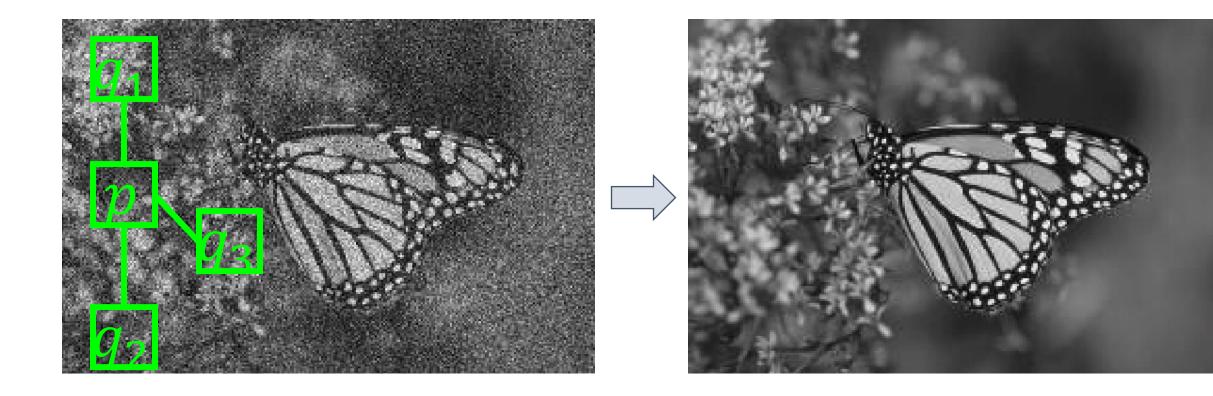
Dosovitskiy, Beyer, Kolesnikov, Weissenborn and Zhai et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale . 2020



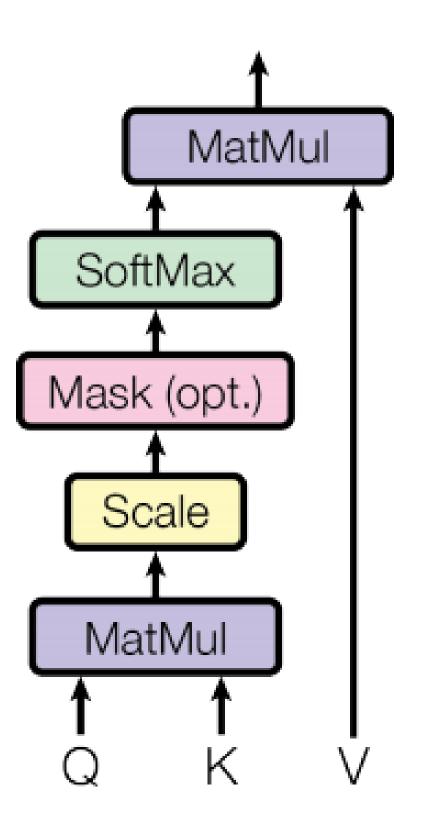
.



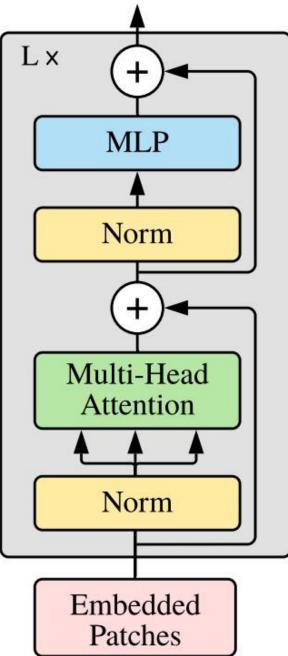
Scaled Dot-Product Attention ^r



Scaled Dot-Product Attention



Transformer Encoder



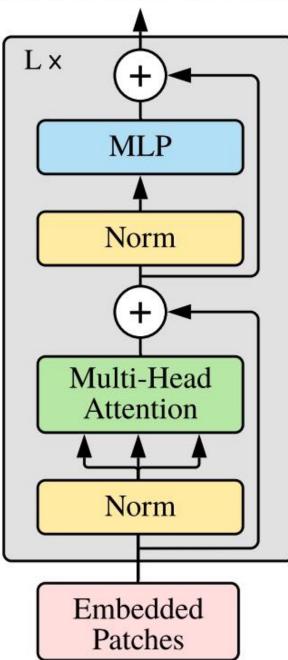
$$\mathbf{z}_{0} = [\mathbf{x}_{\text{class}}; \, \mathbf{x}_{p}^{1} \mathbf{E}; \, \mathbf{x}_{p}^{2} \mathbf{E}; \cdots; \, \mathbf{x}_{p}^{N} \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^{2} \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
(1)

$$\mathbf{z}'_{\ell} = \text{MSA}(\text{LN}(\mathbf{z}_{\ell-1})) + \mathbf{z}_{\ell-1}, \qquad \ell = 1 \dots L$$
(2)

$$\mathbf{z}_{\ell} = \text{MLP}(\text{LN}(\mathbf{z}'_{\ell})) + \mathbf{z}'_{\ell}, \qquad \ell = 1 \dots L$$
(3)

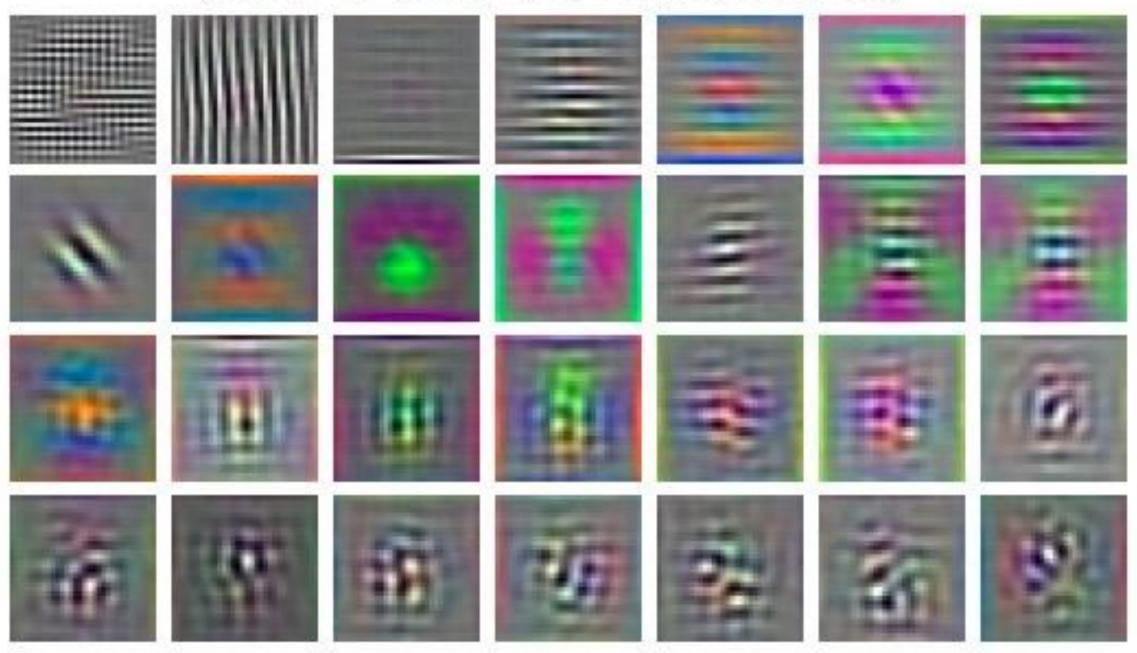
$$\mathbf{y} = \text{LN}(\mathbf{z}_{L}^{0})$$
(4)

 ViT-L / 32 model first layer, it means the patch has 32 x 32 pixels_{Transformer Encoder}



N V V V

RGB embedding filters (first 28 principal components)



Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

- Previous CNN is tiny compared with ViT models
- CNN is much faster

Netwo

- ResNet ResNet ResNet
- RegNe RegNe RegNe
- ViT-B/ ViT-L/
- DeiT-T DeiT-S DeiT-B
- DeiT-B

ork	#param.	image throughput size (image/s)		ImNet top-1
	Co	nvnets		
et-18 [21]	12M	$\begin{array}{ c c c } 224^2 \\ 224^2 \\ 224^2 \\ 224^2 \\ 224^2 \end{array}$	4458.4	69.8
et-50 [21]	25M		1226.1	76.2
et-101 [21]	45M		753.6	77.4
et-152 [21]	60M		526.4	78.3
etY-4GF [40]*	21M	$\begin{array}{ c c } 224^2 \\ 224^2 \\ 224^2 \\ 224^2 \end{array}$	1156.7	80.0
etY-8GF [40]*	39M		591.6	81.7
etY-16GF [40]*	84M		334.7	82.9
/16 [15]	86M	$\begin{vmatrix} 384^2 \\ 384^2 \end{vmatrix}$	85.9	77.9
/16 [15]	307M		27.3	76.5
Ti	5M	$\begin{array}{ c c c } 224^2 \\ 224^2 \\ 224^2 \\ 224^2 \end{array}$	2536.5	72.2
S	22M		940.4	79.8
B	86M		292.3	81.8
B†384	86M	$ 384^2$	85.9	83.1

- Small and Base size model could be improved with strong data augmentation and regularization (DeiT)
- More data helps ViT (ImageNet-22K, JFT-300M)

ViT ViT ViT

1.3M Images

(a) Regular ImageNet-1K trained models							
mathad	image	Hoorom		throughput	ImageNet		
method	size	#param.	FLUFS	throughput (image / s)	top-1 acc.		
T-B/16 [<mark>19</mark>]	384 ²	86M	55.4G	85.9	77.9		
T-L/16 [19]	384 ²	307M	190.7G	27.3	76.5		
eiT-S [60]	224 ²	22M	4.6G	940.4	79.8		
eiT-B [60]	224 ²	86M	17.5G	292.3	81.8		
eiT-B [<mark>60</mark>]	384 ²	86M	55.4G	85.9	83.1		
(b) ImageNet-22K pre-trained models 14M Images							
method	image	#naram	FI OPs	throughput	ImageNet		
methou			TLOI S	(image / s)	top-1 acc.		
Г-В/16 [<mark>19</mark>]	384 ²	86M	55.4G	85.9	84.0		
Г-L/16 [<mark>19</mark>]	384 ²	307M	190.7G	27.3	85.2		
(c) JFT-300M pre-trained models 300M Images							
method	image	thorom		throughput (image / s)	ImageNet		
method	size	#param.	FLOFS	(image / s)	top-1 acc.		
T-B/16 [<mark>19</mark>]	384 ²		55.4G	85.9	84.2		
T-L/16 [<mark>19</mark>]	384 ²	307M	190.7G	27.3	87.1		
Г Ц/1 / Г <mark>10</mark> 1	2012	2071/	100 7C	2 20	00 1		

- ViT learns intuitive local structures
- Closer patches tend to have more similarity of position embeddings

row

Input patch

12

11

13

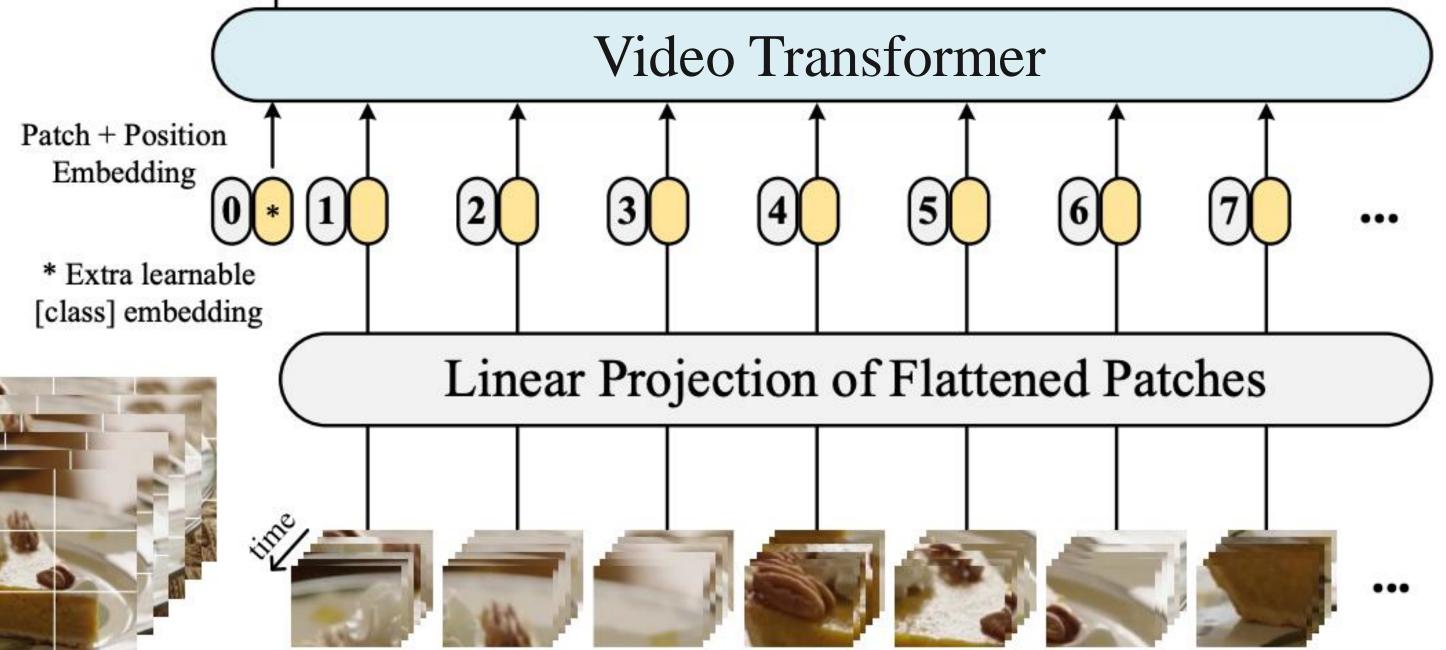
Each patch shows the position embedding cosine similarity between the patch at this location and all other patches

ViT-L16 7 epochs, LR=0.0002, WD=0.01 **Cosine similarity** 13 14 8 12 9

Input patch column

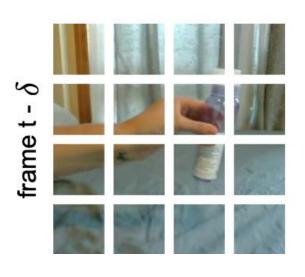
Transformer in Videos TimeSformer

- Share similar structure as ViT
- N • Video clip as a sequence of frame⁻ level patches (16x16)



Transformer in Videos TimeSformer

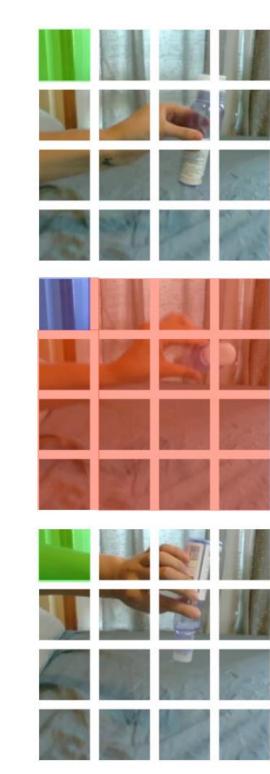
How to model temporal information?



Attention	Params	K400	SSv2
Space	85.9M	76.9	36.6
Joint Space-Time	85.9M	77.4	58.5
Divided Space-Time	121.4M	78.0	59.5
Sparse Local Global	121.4M	75.9	56.3
Axial	156.8M	73.5	56.2

Space Attention (S)

Joint Space-Time Attention (ST)



Divided Space-Time Attention (T+S)

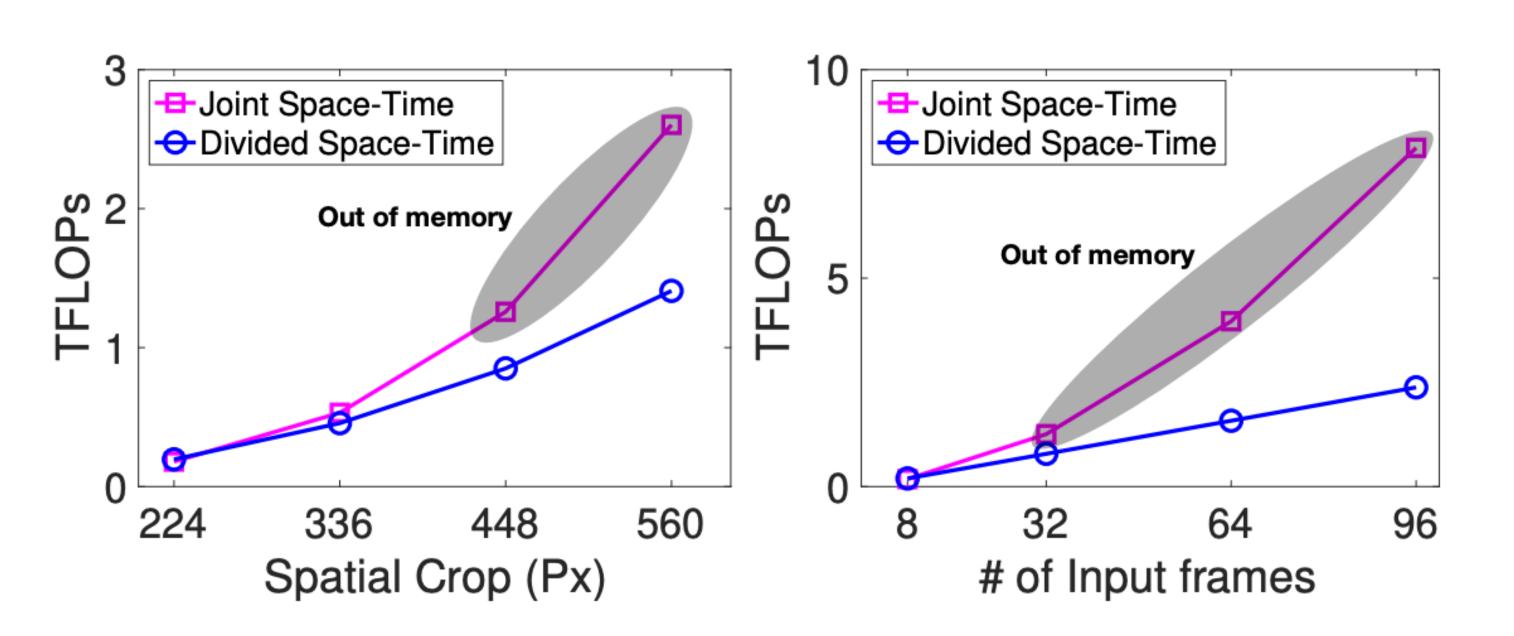
Sparse Local Global Attention (L+G)

Axial Attention (**T+W+H**)

Transformer in Videos

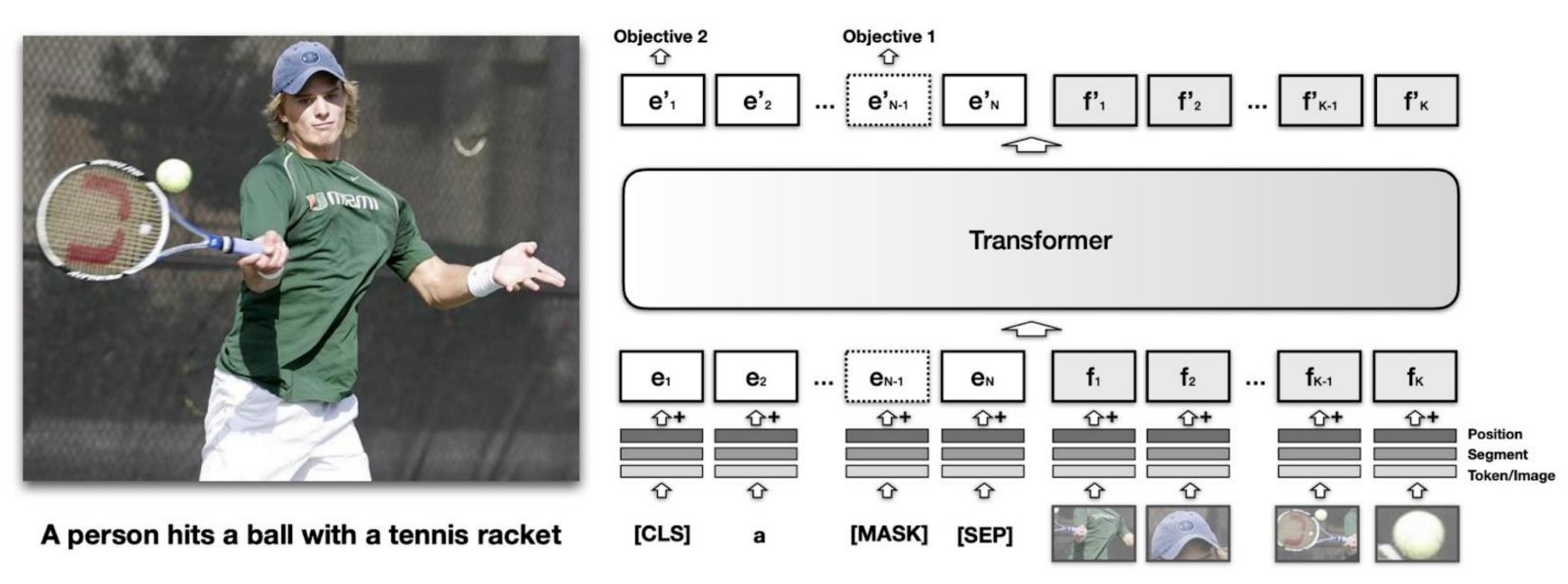
Joint Space-Time Attention (ST)

Divided Space-Time Attention (T+S)



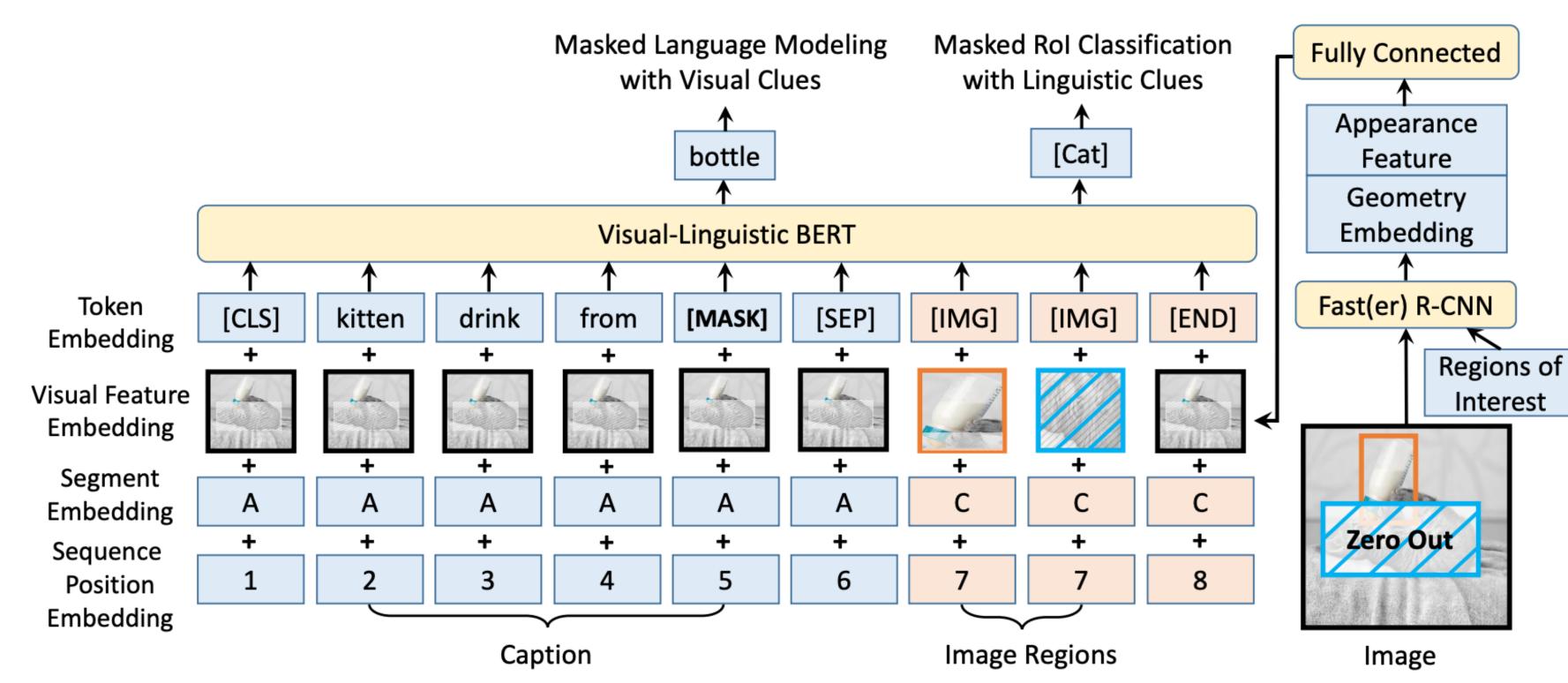
Transformer for Multi-modality Image-Text

- Image patches are generated by pre-trained object detector
- Mask language modeling



Transformer for Multi-modality Image-Text

Extend with masked Rol classification



Transformer for Multi-modality **Video-Text**

- Concatenate word sequence with video frame sequence
- Mask language modeling

