Conditional Generative Adversarial Networks

Xiaolong Wang

Last class

Noise Z

BigGAN: Class-Conditioned

This Class

- Image-to-Image Translation: pix2pix
- Unpaired Image-to-Image Translation: CycleGAN
- Other Applications of Adversarial Learning

Image-to-Image Translation: pix2pix

Noise Vector

Goodfellow et al., 2014

Conditional GANs

BW to Color

input

output

Conditional GANs

Generator takes an image as input, not noise. Discriminator takes a pair of images as inputs, not just one image.

Conditional GANs

Generator takes an image as input, not noise. Discriminator takes a pair of images as inputs, not just one image.

Pix2Pix

Isola et al. Image-to-Image Translation with Conditional Adversarial Networks. 2017.

Encode: convolution \rightarrow BatchNorm \rightarrow ReLU

Decode: transposed convolution \rightarrow BatchNorm \rightarrow ReLU

Effect of adding skip connections to the generator

U-Net Encoder-decoder

L1+cGAN

Generator loss: GAN loss plus L1 reconstruction penalty $G^* = \arg\min_G \max_D \mathcal{L}_{GAN}(G, D) + \lambda \sum_i ||y_i - G(x_i)||_1$

Generated output $G(x_i)$ should be close to ground truth target y_i

Generator loss: GAN loss plus L1 reconstruction penalty

$G^* = \arg\min_G \max_D \mathcal{L}_{GAN}(G, D) + \lambda \sum ||y_i - G(x_i)||_1$

Image-to-image translation: Results

• Day to night

Image-to-image translation: Results

• Edges

Output

Image-to-image translation: Results

pix2pix demo

#edges2cats by Christopher Hesse

by Bertrand Gondouin

by Jack Qiao

"Do as I do"

by Brannon Dorsey

Sketch \rightarrow Portrait

by Mario Klingemann

#fotogenerator

sketch by Yann LeCun

Unpaired Image-to-Image Translation: CycleGAN

Unpaired image-to-image translation

Given two unordered image collections X and Y, learn to ${ \bullet }$ "translate" an image from one into the other and vice versa

Unpaired image-to-image translation

Given two unordered image collections X and Y, learn to "translate" an image from one into the other and vice versa

Van Gogh

Cezanne

Ukiyo-e

CycleGAN

CycleGAN: Loss

- Requirements:
 - *G* translates from *X* to *Y*, *F* translates from *Y* to *X*
 - D_X recognizes images from X, D_Y from Y
 - We want $F(G(x)) \approx x$ and $G(F(y)) \approx y$
- CycleGAN discriminator loss: LSGAN
 - $\mathcal{L}_{\text{GAN}}(D_Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [(D_Y(y) D_Y(y))]$
 - $\mathcal{L}_{\text{GAN}}(D_X) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [(D_X(x) D_X)]$
- CycleGAN generator loss:

 $\mathcal{L}_{\rm cyc}(G,F) = \mathbb{E}_{x \sim p_{\rm data}(x)} [D_Y(G(x) - F)] + \mathbb{E}_{x \sim p_{\rm data}(x)} [\|F(G(x)) - f\|]_1]$

es from Y to X om Y ≈ y GAN

$$-1)^{2}] + \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[D_{Y} (G(x))^{2} \right]$$
$$-1)^{2}] + \mathbb{E}_{y \sim p_{\text{data}}(y)} \left[D_{X} (F(y))^{2} \right]$$

$$1)^{2}] + \mathbb{E}_{y \sim p_{data}(y)} [D_{X}(F(y) - 1)^{2}]$$
$$+ \mathbb{E}_{y \sim p_{data}(y)} [\|G(F(y)) - y\|_{1}]$$

CycleGAN

Input x

Output G(x) Reconstruction F(G(x))

Output

horse \rightarrow zebra

 $zebra \rightarrow horse$

orange \rightarrow apple

Input

Van Gogh

CycleGAN: Failure cases

photo → Ukiyo-e

photo \rightarrow Van Gogh

iPhone photo \rightarrow DSLR photo

CycleGAN: Failure cases

Input

Output

horse \rightarrow zebra

CycleGAN: Limitations

- Cannot handle shape changes (e.g., dog to cat)
- Can get confused on images outside of the training domains (e.g., horse with rider)
- Cannot close the gap with paired translation methods
- Does not account for the fact that one transformation direction may be more challenging than the other

High-resolution, high-quality pix2pix

(a) Synthesized result

(b) Application: Change label types

T.-C. Wang et al., <u>High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs</u>, CVPR 2018

Our result

(c) Application: Edit object appearance

High-resolution, high-quality pix2pix Two-scale generator architecture (up to 2048 x 1024 resolution)

Then append higher-res enhancer network (G2) blocks and train G1 and G2 jointly

T.-C. Wang et al., <u>High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs</u>, CVPR 2018

Human generation conditioned on pose

Figure 3: (Top) Training: Our model uses a pose detector P to create pose stick figures from video frames of the target subject. We learn the mapping G alongside an adversarial discriminator D which attempts to distinguish between the "real" correspondences $(x_t, x_{t+1}), (y_t, y_{t+1})$ and the "fake" sequence $(x_t, x_{t+1}), (G(x_t), G(x_{t+1}))$. (Bottom) Transfer: We use a pose detector P to obtain pose joints for the source person that are transformed by our normalization process Norm into joints for the target person for which pose stick figures are created. Then we apply the trained mapping G.

C. Chan, S. Ginosar, T. Zhou, A. Efros. Everybody Dance Now. ICCV 2019

Target Subject 1

https://carolineec.github.io/everybody_dance_now/

C. Chan, S. Ginosar, T. Zhou, A. Efros. <u>Everybody Dance Now</u>. ICCV 2019

Source Subject

Target Subject 1

Target Subject 2

Other Applications of Adversarial Learning

Swapping Autoencoder

Park et al. 2020

Swapping Autoencoder

HoloGAN

HoloGAN

Self-Supervised Robot Learning

Pinto et al. ICRA 2016

Levine et al. ISER 2016

Agrawal et al. NIPS 2016

Sensory supervision alone is weak

Hard to distinguish grasps:

Pinto et al. Supervision via Competition: Robot Adversaries for Learning Tasks . ICRA 2017.

VS

So what do humans do?

So what do humans do?

Key Idea

Extract more information with Adversarial agents.

An Adversary that Shakes

Destabilization of an unstable grasp by Shaking

Unstable Grasp

Stable Grasp

Destabilization of an unstable grasp by Snatching

Unstable Grasp

Stable Grasp

Results

base	Shak
68%	80%

ke Snatch % 82%

Summary

- Image-to-Image Translation: pix2pix
- Unpaired Image-to-Image Translation: CycleGAN
- Other Applications of Adversarial Learning