## Image Classification: K-NN and Linear Classifier

Xiaolong Wang

### **Coming Assignments**

- The first assignment will be announced in This Thursday after the class
- There will be a tutorial on how to do/submit assignments This Friday, 4:00 5:00 pm
- We will use the compute resources in <a href="https://datahub.ucsd.edu/">https://datahub.ucsd.edu/</a>

### Last class

- Overview of deep learning, applications on computer vision, NLP, robotics
- The concept and goal of learning

### Last class



### Today: Two basic methods

- Nearest Neighbors
- Linear Classifier

### Image Classification



An image is a 300 x 500 x 3 Tensor.

Each bit has value in the range [0, 255]

### Images with different background



http://cs231n.stanford.edu/

### Images with occlusion



### Images with illumination



### Images with Deformation



### **Nearest Neighbor Classifier**

### **Nearest Neighbor**

#### Training set:



Mushroom

Dog

Ant

Cat

Car

Testing: Compute the distance between a test image and training images









### **Nearest Neighbor**

- What metric? What representation?
- Metric, L1 distance:

$$d(x_1, x_2) = \sum_{h, w} \left| x_1^{h, w} - x_2^{h, w} \right|$$

| I |    | test i | mage |     |
|---|----|--------|------|-----|
|   | 56 | 32     | 10   | 18  |
|   | 90 | 23     | 128  | 133 |
|   | 24 | 26     | 178  | 200 |
|   | 2  | 0      | 255  | 220 |

|   | tr | aining | g imag | je  |
|---|----|--------|--------|-----|
| - | 10 | 20     | 24     | 17  |
|   | 8  | 10     | 89     | 100 |
|   | 12 | 16     | 178    | 170 |
|   | 4  | 32     | 233    | 112 |

pixel-wise absolute value differences

| = | 46 | 12 | 14 | 1   |        |
|---|----|----|----|-----|--------|
|   | 82 | 13 | 39 | 33  | а      |
|   | 12 | 10 | 0  | 30  | -      |
|   | 2  | 32 | 22 | 108 | e<br>e |

→ 456

## Recall Supervised Learning y = f(x) $\int_{\text{output}} \int_{\text{classifier}} \int_{\text{input}} \int_{\text{imput}} \int_{\text{impu}} \int_{\text{impu}$

- **Training** (or **learning**): given a *training set* of labeled examples  $\{(x_1, y_1), ..., (x_N, y_N)\}$ , train a predictor f
- **Testing** (or **inference**): apply predictor f to a new *test* example x and output the predicted value y = f(x)

### Nearest neighbor classifier



- f(x) = the label of the closest example (computed via a distance metric)
- Store all the training data, search all data each test time given a test example

### K-nearest neighbor classifier



- 1 example is sometimes not enough.
- K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of the majority in the NN examples.

### K-nearest neighbor classifier



Larger K gives cleaner boundary between classes

Larger K is more robust to outliers

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

### K-NN examples (K=10), based on pixelwise difference



### The algorithm

- Extract the features of each image in the training data, and record the corresponding labels
- Given a test image, extract the feature, and compute the distance between the test image and the whole training dataset
- Select the top-K Nearest Neighbors and obtain their corresponding labels
- The test image is classified as the majority class in the K-NN examples

### **Tunning Hyperparameters**

- What is the best K to use?
- What is a good distance metric?

• L1 distance: 
$$d(x_1, x_2) = \sum_{h,w} |x_1^{h,w} - x_2^{h,w}|$$

• L2 distance: 
$$d(x_1, x_2) = \sum_{h,w} \left| \left| x_1^{h,w} - x_2^{h,w} \right| \right|_2^2$$

## Nearest Neighbor is a great way for visualization neural network

Query



GANs (Brock et al., 2019)



### **Texture Synthesis**



https://people.eecs.berkeley.edu/~efros/research/NPS/alg.html

``Texture Synthesis by Non-parametric Sampling" Alexei A. Efros and Thomas K. Leung, ICCV 1999.



### Goods and Bads of Nearest Neighbor

#### • Good:

- Do not require training
- Simple and robust to outliers
- Bad:
  - Storage: needs to store the whole dataset
  - Time: needs to go over each training data point, inference time grows linearly as the training data increases
- Can we *compress* the training samples to a set of weights?

### Linear Classifier



- Goal: Learn a *d*-dimentional vector of parameters  $W \in \mathbb{R}^d$ , given a set of *d*-dimentional data
- Prediction:  $f(x) = W_1 x_1 + W_2 x_2 + ... + W_d x_d = W x$



• Prediction:  $f(x) = W_1 x_1 + W_2 x_2 + ... + W_d x_d = W x$ 

Linear Classifier

- If *f*(*x*) > 0, *x* belongs to class 1, if *f*(*x*) < 0, *x* belongs to class 2.
- See *W* as the compression of the whole training dataset, and we only need to compute 1 multiplication for obtaining the label.

### Linear Classifier: adding bias



- Prediction:  $f(x) = W_1 x_1 + W_2 x_2 + ... + W_d x_d + b = Wx + b$
- $b \in \mathbb{R}^1$ , b is only a 1-dimentional digit for 2-class classification

### Linear Classifier: Multiple Class

- 1 plane is not enough
- Multiple planes



Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

### Linear Classifier: Multiple Class

 Instead of learning one vector of weights, we will need to learn one vector of weights for each category:

airplane classifie

deer class

- A dog classifier:  $f_1(x) = W^1 x + b^1$
- A cat classifier:  $f_2(x) = W^2 x + b^2$
- A ship classifier:  $f_3(x) = W^3 x + b^3$
- Select the class with the max classification score

### Example: Represent an image with 4 pixels

Flatten tensors into a vector



### Example: Represent an image with 4 pixels

![](_page_30_Figure_1.jpeg)

f(x) = Wx + b

```
x \in \mathbb{R}^{3072} (32 \times 32 \times 3)W \in \mathbb{R}^{3072}b \in \mathbb{R}^{1}
```

### Example: Represent an image with 4 pixels

![](_page_31_Figure_1.jpeg)

$$f(x) = Wx + b$$

$$x \in \mathbb{R}^{3072} (32 \times 32 \times 3)$$
$$W \in \mathbb{R}^{3072}$$
$$b \in \mathbb{R}^{1}$$

#### Visualizing *W* in 10 different classes:

![](_page_31_Picture_5.jpeg)

### Training the Linear Classifier

- Linear regression
- Logistic regression (next class)

### **Training with Linear Regression**

- Given the training data  $\{(x_1, y_1), \dots, (x_N, y_N)\}$ , drawn from distribution *D*.
- Find predictor f(x) so that it performs well on test (unseen) data drawn from the same distribution D.
- Potential problem: What if the data is not taken from the same distribution *D*?

### How to evaluate "performs well"?

• Define an expected loss as,

 $\mathbb{E}_{(x,y)\sim D}[l(f,x,y)]$ 

• To approximate the loss using N examples  $\{(x_1, y_1), \dots, (x_N, y_N)\},\$ 

$$\frac{1}{N}\sum_{i=1}^{N}l(f,x_i,y_i)$$

### Linear Regression

• Loss: Using L2 distance:

$$l(f, x_i, y_i) = (f(x_i) - y_i)^2 = (Wx_i + b - y_i)^2$$

• Average through all the examples

$$\frac{1}{N} \sum_{i=1}^{N} (Wx_i + b - y_i)^2$$

### Linear Regression

$$\frac{1}{N} \sum_{i=1}^{N} (Wx_i + b - y_i)^2$$

- In two-class classification:  $y \in \{-1,1\}$ . However, there is no regulation to constrain the output range.
- In multiple-class case, for each class we perform two-class classification:  $y \in \{-1,1\}$ .
- Not convenient for classification

# What problem can be solved using linear regression

- Predicting a continuous number instead of category ID
- Predicting bounding box location, human pose location.

![](_page_37_Picture_3.jpeg)

![](_page_37_Picture_4.jpeg)

# What problem can be solved using linear regression

Video Prediction, Colorization

![](_page_38_Picture_2.jpeg)

### What I have not talked about yet

Optimization of linear classifier using the loss function (next class)

### **Compare K-NN and Linear classifier**

- Do not need training
- Time consuming in test time
- Non-parametric, explicitly search through data
- More robust to outliers, using larger K

- Need training
- Time efficient in test time
- Parametric, use parameters to "memorize" the dataset
- Can be sensitive to outliers

### In this class

- K-nearest neighbor classifier
- Linear classifier
- Training linear classifier with linear regression (loss funnction)

### Next class

- More on linear classifier
- Loss function
- Optimization of linear classifier
- Regularization