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Coming Assignments

• The first assignment will be announced in This Thursday after 
the class

• There will be a tutorial on how to do/submit assignments This
Friday, 4:00 - 5:00 pm

• We will use the compute resources in https://datahub.ucsd.edu/

https://datahub.ucsd.edu/


Last class

• Overview of deep learning, applications on computer vision, 
NLP, robotics

• The concept and goal of learning
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Today: Two basic methods

• Nearest Neighbors

• Linear Classifier



Image Classification

An image is a 300 x 500 x 3 
Tensor. 

Each bit has value in the 
range [0, 255]



Images with different background

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Images with occlusion



Images with illumination



Images with Deformation



Nearest Neighbor Classifier



Nearest Neighbor

Mushroom Dog Ant Cat Car

Training set: 

Testing: Compute the distance between a test image and training images

| | →, ℝ

, ℝ| | →



Nearest Neighbor

• What metric? What representation?
• Metric, L1 distance:

𝑑 𝑥!, 𝑥" = ∑#,% 𝑥!
#,% − 𝑥"

#,%



Recall Supervised Learning
𝑦 = 𝑓(𝑥)

• Training (or learning): given a training set of labeled 
examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, train a predictor 𝑓

• Testing (or inference): apply predictor 𝑓 to a new test 
example 𝑥 and output the predicted value 𝑦 = 𝑓(𝑥)

output 
label

classifier input 
image



Nearest neighbor classifier

• 𝑓 𝑥 = the label of the closest example (computed via a 
distance metric)

• Store all the training data, search all data each test time 
given a test example

Test 
example

Training 
data from 

class 1

Training 
data from 

class 2



K-nearest neighbor classifier

Test 
example

Training 
data from 

class 1

Training 
data from 

class 2

• 1 example is sometimes not enough.

• K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of 
the majority in the NN examples.



K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

Larger K gives cleaner boundary between classes 

Larger K is more robust to outliers

http://cs231n.github.io/classification/


K-NN examples (K=10), based on pixel-
wise difference



The algorithm
• Extract the features of each image in the training data, and 

record the corresponding labels

• Given a test image, extract the feature, and compute the 
distance between the test image and the whole training dataset

• Select the top-K Nearest Neighbors and obtain their 
corresponding labels

• The test image is classified as the majority class in the K-NN 
examples



Tunning Hyperparameters

• What is the best K to use? 

• What is a good distance metric? 

• L1 distance: 𝑑 𝑥", 𝑥# = ∑$,& 𝑥"
$,& − 𝑥#

$,&

• L2 distance: 𝑑 𝑥", 𝑥# = ∑$,& 𝑥"
$,& − 𝑥#

$,&
#

#



Nearest Neighbor is a great way for 
visualization neural network

GANs (Brock et al., 2019)

Query



Texture Synthesis

https://people.eecs.berkeley.edu/~efros/research/NPS/alg.html

``Texture Synthesis by Non-parametric Sampling''
Alexei A. Efros and Thomas K. Leung, ICCV 1999.



Goods and Bads of Nearest Neighbor

• Good: 
• Do not require training
• Simple and robust to outliers

• Bad: 
• Storage: needs to store the whole dataset
• Time: needs to go over each training data point, inference time grows 

linearly as the training data increases

• Can we compress the training samples to a set of weights? 



Linear Classifier



Linear Classifier

Training 
data from 

class 1

Training 
data from 

class 2

• Goal: Learn a 𝑑-dimentional vector of parameters 𝑊 ∈ ℝ&, 
given a set of 𝑑-dimentional data

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& = 𝑊𝑥



Linear Classifier Class 
1

Class 
2

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& = 𝑊𝑥

• If 𝑓 𝑥 > 0, 𝑥 belongs to class 1, if 𝑓 𝑥 < 0, 𝑥 belongs to class 
2. 

• See 𝑊 as the compression of the whole training dataset, and 
we only need to compute 1 multiplication for obtaining the label.



Linear Classifier: adding bias

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& + 𝑏 = 𝑊𝑥 + 𝑏

• 𝑏 ∈ ℝ!, 𝑏 is only a 1-dimentional digit for 2-class classification

Training 
data from 

class 1

Training 
data from 

class 2



Linear Classifier: Multiple Class

• 1 plane is not enough

• Multiple planes

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/


Linear Classifier: Multiple Class

• Instead of learning one vector of weights, we will need to learn 
one vector of weights for each category:

• A dog classifier: 𝑓" 𝑥 = 𝑊"𝑥 + 𝑏"
• A cat classifier: 𝑓# 𝑥 = 𝑊#𝑥 + 𝑏#
• A ship classifier: 𝑓' 𝑥 = 𝑊'𝑥 + 𝑏'

• Select the class with the max classification score



Example: Represent an image with 4 pixels



Example: Represent an image with 4 pixels

𝑓 𝑥 = 𝑊𝑥 + 𝑏

𝑥 ∈ ℝ!"#$ 32×32×3
𝑊 ∈ ℝ!"#$
𝑏 ∈ ℝ%



Example: Represent an image with 4 pixels

𝑓 𝑥 = 𝑊𝑥 + 𝑏

𝑥 ∈ ℝ!"#$ 32×32×3
𝑊 ∈ ℝ!"#$
𝑏 ∈ ℝ%

Visualizing 𝑊 in 10 different classes:



Training the Linear Classifier

• Linear regression

• Logistic regression (next class)



Training with Linear Regression

• Given the training data {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦')}, drawn from 
distribution 𝐷. 

• Find predictor 𝑓 𝑥 so that it performs well on test (unseen) 
data drawn from the same distribution 𝐷. 

• Potential problem: What if the data is not taken from the same 
distribution 𝐷?



How to evaluate ”performs well”?

• Define an expected loss as,

𝔼(),*)∽- 𝑙 𝑓, 𝑥, 𝑦

• To approximate the loss using 𝑁 examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦')},

1
𝑁
;
./!

'

𝑙 𝑓, 𝑥. , 𝑦.



Linear Regression
• Loss: Using L2 distance:

𝑙 𝑓, 𝑥. , 𝑦. = 𝑓 𝑥. − 𝑦. " = 𝑊𝑥. + 𝑏 − 𝑦. "

• Average through all the examples

1
𝑁
;
./!

'

𝑊𝑥. + 𝑏 − 𝑦. "



Linear Regression
1
𝑁
;
./!

'

𝑊𝑥. + 𝑏 − 𝑦. "

• In two-class classification: 𝑦 ∈ −1,1 . However, there is no 
regulation to constrain the output range.

• In multiple-class case, for each class we perform two-class 
classification: 𝑦 ∈ −1,1 .

• Not convenient for classification



What problem can be solved using linear 
regression

• Predicting a continuous number instead of category ID

• Predicting bounding box location, human pose location. 



What problem can be solved using linear 
regression

• Video Prediction, Colorization



What I have not talked about yet

Optimization of linear classifier using the loss function (next class)



Compare K-NN and Linear classifier

• Need training

• Time efficient in test time

• Parametric, use parameters to 
”memorize” the dataset

• Can be sensitive to outliers

• Do not need training

• Time consuming in test time

• Non-parametric, explicitly 
search through data

• More robust to outliers, using 
larger K



In this class

• K-nearest neighbor classifier

• Linear classifier

• Training linear classifier with linear regression (loss funnction)



Next class

• More on linear classifier

• Loss function

• Optimization of linear classifier

• Regularization 


