
Image Classification:
K-NN and Linear Classifier

Xiaolong Wang

Coming Assignments

• The first assignment will be announced in This Thursday after
the class

• There will be a tutorial on how to do/submit assignments This
Friday, 4:00 - 5:00 pm

• We will use the compute resources in https://datahub.ucsd.edu/

https://datahub.ucsd.edu/

Last class

• Overview of deep learning, applications on computer vision,
NLP, robotics

• The concept and goal of learning

Last class
Training
Labels

Training
Samples

Training

Training time

Features Learned
model

PredictionFeatures

Testing time

Test Sample

Learned
model

Today: Two basic methods

• Nearest Neighbors

• Linear Classifier

Image Classification

An image is a 300 x 500 x 3
Tensor.

Each bit has value in the
range [0, 255]

Images with different background

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Images with occlusion

Images with illumination

Images with Deformation

Nearest Neighbor Classifier

Nearest Neighbor

Mushroom Dog Ant Cat Car

Training set:

Testing: Compute the distance between a test image and training images

| | →, ℝ

, ℝ| | →

Nearest Neighbor

• What metric? What representation?
• Metric, L1 distance:

𝑑 𝑥!, 𝑥" = ∑#,% 𝑥!
#,% − 𝑥"

#,%

Recall Supervised Learning
𝑦 = 𝑓(𝑥)

• Training (or learning): given a training set of labeled
examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, train a predictor 𝑓

• Testing (or inference): apply predictor 𝑓 to a new test
example 𝑥 and output the predicted value 𝑦 = 𝑓(𝑥)

output
label

classifier input
image

Nearest neighbor classifier

• 𝑓 𝑥 = the label of the closest example (computed via a
distance metric)

• Store all the training data, search all data each test time
given a test example

Test
example

Training
data from

class 1

Training
data from

class 2

K-nearest neighbor classifier

Test
example

Training
data from

class 1

Training
data from

class 2

• 1 example is sometimes not enough.

• K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of
the majority in the NN examples.

K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

Larger K gives cleaner boundary between classes

Larger K is more robust to outliers

http://cs231n.github.io/classification/

K-NN examples (K=10), based on pixel-
wise difference

The algorithm
• Extract the features of each image in the training data, and

record the corresponding labels

• Given a test image, extract the feature, and compute the
distance between the test image and the whole training dataset

• Select the top-K Nearest Neighbors and obtain their
corresponding labels

• The test image is classified as the majority class in the K-NN
examples

Tunning Hyperparameters

• What is the best K to use?

• What is a good distance metric?

• L1 distance: 𝑑 𝑥", 𝑥# = ∑$,& 𝑥"
$,& − 𝑥#

$,&

• L2 distance: 𝑑 𝑥", 𝑥# = ∑$,& 𝑥"
$,& − 𝑥#

$,&
#

#

Nearest Neighbor is a great way for
visualization neural network

GANs (Brock et al., 2019)

Query

Texture Synthesis

https://people.eecs.berkeley.edu/~efros/research/NPS/alg.html

``Texture Synthesis by Non-parametric Sampling''
Alexei A. Efros and Thomas K. Leung, ICCV 1999.

Goods and Bads of Nearest Neighbor

• Good:
• Do not require training
• Simple and robust to outliers

• Bad:
• Storage: needs to store the whole dataset
• Time: needs to go over each training data point, inference time grows

linearly as the training data increases

• Can we compress the training samples to a set of weights?

Linear Classifier

Linear Classifier

Training
data from

class 1

Training
data from

class 2

• Goal: Learn a 𝑑-dimentional vector of parameters 𝑊 ∈ ℝ&,
given a set of 𝑑-dimentional data

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& = 𝑊𝑥

Linear Classifier Class
1

Class
2

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& = 𝑊𝑥

• If 𝑓 𝑥 > 0, 𝑥 belongs to class 1, if 𝑓 𝑥 < 0, 𝑥 belongs to class
2.

• See 𝑊 as the compression of the whole training dataset, and
we only need to compute 1 multiplication for obtaining the label.

Linear Classifier: adding bias

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& + 𝑏 = 𝑊𝑥 + 𝑏

• 𝑏 ∈ ℝ!, 𝑏 is only a 1-dimentional digit for 2-class classification

Training
data from

class 1

Training
data from

class 2

Linear Classifier: Multiple Class

• 1 plane is not enough

• Multiple planes

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Linear Classifier: Multiple Class

• Instead of learning one vector of weights, we will need to learn
one vector of weights for each category:

• A dog classifier: 𝑓" 𝑥 = 𝑊"𝑥 + 𝑏"
• A cat classifier: 𝑓# 𝑥 = 𝑊#𝑥 + 𝑏#
• A ship classifier: 𝑓' 𝑥 = 𝑊'𝑥 + 𝑏'

• Select the class with the max classification score

Example: Represent an image with 4 pixels

Example: Represent an image with 4 pixels

𝑓 𝑥 = 𝑊𝑥 + 𝑏

𝑥 ∈ ℝ!"#$ 32×32×3
𝑊 ∈ ℝ!"#$
𝑏 ∈ ℝ%

Example: Represent an image with 4 pixels

𝑓 𝑥 = 𝑊𝑥 + 𝑏

𝑥 ∈ ℝ!"#$ 32×32×3
𝑊 ∈ ℝ!"#$
𝑏 ∈ ℝ%

Visualizing 𝑊 in 10 different classes:

Training the Linear Classifier

• Linear regression

• Logistic regression (next class)

Training with Linear Regression

• Given the training data {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦')}, drawn from
distribution 𝐷.

• Find predictor 𝑓 𝑥 so that it performs well on test (unseen)
data drawn from the same distribution 𝐷.

• Potential problem: What if the data is not taken from the same
distribution 𝐷?

How to evaluate ”performs well”?

• Define an expected loss as,

𝔼(),*)∽- 𝑙 𝑓, 𝑥, 𝑦

• To approximate the loss using 𝑁 examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦')},

1
𝑁
;
./!

'

𝑙 𝑓, 𝑥. , 𝑦.

Linear Regression
• Loss: Using L2 distance:

𝑙 𝑓, 𝑥. , 𝑦. = 𝑓 𝑥. − 𝑦. " = 𝑊𝑥. + 𝑏 − 𝑦. "

• Average through all the examples

1
𝑁
;
./!

'

𝑊𝑥. + 𝑏 − 𝑦. "

Linear Regression
1
𝑁
;
./!

'

𝑊𝑥. + 𝑏 − 𝑦. "

• In two-class classification: 𝑦 ∈ −1,1 . However, there is no
regulation to constrain the output range.

• In multiple-class case, for each class we perform two-class
classification: 𝑦 ∈ −1,1 .

• Not convenient for classification

What problem can be solved using linear
regression

• Predicting a continuous number instead of category ID

• Predicting bounding box location, human pose location.

What problem can be solved using linear
regression

• Video Prediction, Colorization

What I have not talked about yet

Optimization of linear classifier using the loss function (next class)

Compare K-NN and Linear classifier

• Need training

• Time efficient in test time

• Parametric, use parameters to
”memorize” the dataset

• Can be sensitive to outliers

• Do not need training

• Time consuming in test time

• Non-parametric, explicitly
search through data

• More robust to outliers, using
larger K

In this class

• K-nearest neighbor classifier

• Linear classifier

• Training linear classifier with linear regression (loss funnction)

Next class

• More on linear classifier

• Loss function

• Optimization of linear classifier

• Regularization

