Self-Supervised Visual Representation Learning

Xiaolong Wang



Deep Learning

He et al. Mask R-CNN. ICCV 2017.
Guler et al. DensePose: Dense Human Pose Estimation In The Wild. CVPR 2018.



The Key is The Supervision

People have labeled Data uploaded on the web
IMAGE
1.2M Images
ACTIVITYNET u o

300K videos

800M images everyday
300 hours of video every minute



Challenge in Generalization

Performance
drop

Image Dog Video Dog



Self-Supervised Learning

® Designing pretext tasks for general representation

® [ransfer the learned representation to downstream tasks via fine-tuning

o Utllize self-supervision during Test Time

o Adapting supervised task, RL task for out-of-distribution generalization



Pretext lasks + Fine-tuning



Pretext Task

The task being solved is not of genuine interest, but is solved only for the true
purpose of learning a good data representation
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Self-Supervised Learning with Context Prediction

[Doersch et al. 2015]



Self-Supervised Learning with Context Prediction
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Self-Supervised Learning with Rotation Prediction
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Self-Supervised Learning with Image Colorization

Lightness L Color ab Lab Image
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[Zhang et al. 2016}



Self-Supervised Learning with Tracking

Similarity
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\Wang et al. 2015



Contrastive Learning

Similar Not Similar
" aetiv Contrastive
128D e 128-D g < " -

2048-D I —1 2048-D I S




(b) Crop and resize

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Require large number

of negatives

(a) Global and local views. (b) Adjacent views.

Chen et al. A Simple Framework for Contrastive Learning of Visual Representations. 2020.



MoCo

contrastive loss

similarity r | exp(q-k 4 / 7-)
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queue
S K+ represents the positive paired sample
encoder ancodor
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K = 60,000

He et al. Momentum Contrast for Unsupervised Visual Representation Learning. 2020.



MoCo

contrastive loss

0, < MmOy + (1 — m)Oq

similarity
q ko k1 ko ... Momentum encoder Is a moving
queue average of the encoder
encoder i m = 0.999
encoder
query rkey key key Momentum encoder does not
L 0 1 2" receive gradients from the loss.

He et al. Momentum Contrast for Unsupervised Visual Representation Learning. 2020.



MoCo

contrastive loss

similarity
q ko k1 ko ...
queue
e momentum
encoder
: k k k
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Since the momentum encoder

changes very slowly. We can maintain
a gueue to store the negative features.

A queue has K=60,000 examp

each example has 512 dimensi

€S,
Ons.

Suppose the batch size for each

the oldest 256 examples.

He et al. Momentum Contrast for Unsupervised Visual Representation Learning. 2020.

iteration Is 256. We will extract the
image features and add the 256
features to the queue, and pop out



How to Evaluate the Representation

* |Linear classification protocol
* Freeze the features (trained neural network)

* Train an extra supervised linear classifier (a fully-connected layer followed by
softmax)

* [ransfer feature to downstream tasks by fine-tuning the whole network
* Object detection

* Image segmentation
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Masked Autoencoder

random masking

Slides credits: Kaiming He



Masked Autoencoder
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Masked Autoencoder
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Masked Autoencoder
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Example Reconstructions

mask 80%



Example Reconstructions

mask 80% reconstruction



Example Reconstructions

mask 80% reconstruction ground-truth



Example Reconstructions

mask 80%



Example Reconstructions

mask 80% reconstruction



Example Reconstructions

mask 80% reconstruction ground-truth



reconstruction vs. # epochs



reconstruction vs. # epochs



reconstruction vs. # epochs



reconstruction vs. # epochs



A general framework using Self-Supervised Learning
to Improve supervised task In test time



same distribution

P = X: train set
0: test set

e e . o e e
* In theory: same distribution for training and testing

Sun et al. Test-Time Training with Self-Supervision for Generalization under Distribution Shifts. ICML 2020.



distribution shifts

P X: train set
0: test set

e e . e
* In theory: same distribution for training and testing

* In the real word: distribution shifts are everywhere



distribution shifts

P X: train set
O: test set

e e e e —m—
In theory: same distribution for training and testing

In the real word: distribution shifts are everywhere
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Hendrycks and Dietterich, 2018

Recht, Roelofs, Schmidt and Shankar, 2019



https://arxiv.org/search/cs?searchtype=author&query=Dietterich%2C+T

Test-Time Training (TTT)
standard test error — EQ f (CIS, Y ); 0 ]

 Does not anticipate the test distribution

* The test sample & gives us a hint about



Test-Time Training (TTT)
standard test error — EQ f (CIS, Y ); 0 ]

Oour test error — EQ [f(aj, y), 9

 Does not anticipate the test distribution
* The test sample & gives us a hint about

* No fixed model, but adapt at test time



Test-Time Training (TTT)

l(z,y); 0
our test error — EQ [f(aj, y), 9

standard test error — EQ

* Does not anticipate the test distribution
* The test sample & gives us a hint about
* No fixed model, but adapt at test time
* One sample learning problem

* No label? Self-supervision!



Rotation prediction as self-supervision
(Gidaris et al. 2018)

e Create labels from unlabeled input

Unsupervised Representation Learning by Predicting Image Rotations
Gidaris, Singh and Komodakis, 2018



Rotation prediction as self-supervision
(Gidaris et al. 2018)

Ys
0P » Create labels from unlabeled input
* Rotate input image by multiples of 90°
90°
130°
2 (0°

Unsupervised Representation Learning by Predicting Image Rotations
Gidaris, Singh and Komodakis, 2018



Rotation prediction as self-supervision
(Gidaris et al. 2018)

Ys
0° e Create labels from unlabeled input
* Rotate input image by multiples of 90°
CNN ]
6’ 90  Produce a four-way classification problem
130°
270°

Unsupervised Representation Learning by Predicting Image Rotations
Gidaris, Singh and Komodakis, 2018



Rotation prediction as self-supervision
(Gidaris et al. 2018)

Ys
0° * Create labels from unlabeled input
* Rotate input image by multiples of 90°
90° * Produce a four-way classification problem
(96 6)8 1900 * Usually a pre-training step
270°

Unsupervised Representation Learning by Predicting Image Rotations
Gidaris, Singh and Komodakis, 2018



Rotation prediction as self-supervision

Unsupervised Representation Learning by Predicting Image Rotations
Gidaris, Singh and Komodakis, 2018

(Gidaris et al. 2018)

Create labels from unlabeled input

Rotate input image by multiples of 90°
Produce a four-way classification problem
Usually a pre-training step

» After training, take feature extractor



Rotation prediction as self-supervision

bird

Unsupervised Representation Learning by Predicting Image Rotations
Gidaris, Singh and Komodakis, 2018

(Gidaris et al. 2018)

Create labels from unlabeled input

Rotate input image by multiples of 90°
Produce a four-way classification problem
Usually a pre-training step

o After training, take feature extractor

e Use it for a downstream main task



Algorithm for TTT
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network
architecture

Sun et al. Test-Time Training with Self-Supervision for Generalization under Distribution Shifts. ICML 2020.



Algorithm for TTT

training




Algorithm for TTT

training
fm(aj, Y; Oe, Qm)




Algorithm for TTT
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Algorithm for TTT
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Algorithm for TTT
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Algorithm for TTT
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Algorithm for TTT
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Algorithm for TTT
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Algorithm for TTT
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min Kp
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Algorithm for TTT
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Algorithm for TTT
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Algorithm for TTT
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Object recognition with corruptions

Gaussian Noise Shot Noise Impulse Noise
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Benchmarking Neural Network Robustness
to Common Corruptions and Perturbations
Hendrycks and Dietterich, 2018



https://arxiv.org/search/cs?searchtype=author&query=Dietterich%2C+T

Results on ImageNet-C
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Joint training reported here is our improved implementation of their method. Please see
our paper for clarification, and their paper for their original results.

Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Hendrycks, Mazeika, Kadavath and Song, 2019

Bl Object recognition task only

i Joint training (Hendrycks et al. 2019)
Bl 177 standard version

B 11T online version




TTT with Masked Autoencoders (MAE)

Test-Time Training with Masked Autoencoding, NeurlPS 2022
Yossi Gandelsman*, Yu Sun®*, Xinlei Chen, Alexei Efros
*: Equal contribution



TTT-MAE on ImageNet-C

B Joint Train (Hendrycks et al.)
Bl TIT-Rot (Sun et al.)

B MAE Only (He et al.)

. TTT-MAE (Ours)
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Test-Time Training with Masked Autoencoding, NeurlPS 2022
Yossi Gandelsman*, Yu Sun®*, Xinlei Chen, Alexei Efros
*: Equal contribution
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Test-Time Training on Video Streams

Test-Time Training on Video Streams
Renhao Wang*, Yu Sun*, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang
*: Equal contribution



Test-Time Training on Video Streams
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Test-Time Training on Video Streams
Renhao Wang*, Yu Sun*, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang
*: Equal contribution



Test-Time Training on Video Streams k?2=t=K
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Test-Time Training on Video Streams
Renhao Wang*, Yu Sun*, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang
*: Equal contribution



Forgetting can be beneficial

Self-Training
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Forgetting can be beneficial
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Forgetting can be beneficial
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Forgetting can be beneficial
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Results on COCO-Videos

Dataset Len. Frames Rate Cls.
CityScapes-VPS [32] | 1.8 3000 17 19
DAVIS [49] 3.5 3455 30 s
YouTube-VOS [76] 45 123,467 30 94
KITTI-STEP [72] 40 8,008 10 19
COCO Videos (Ours) | 309 30,925 10 134




