
Different Elements in Training
Convolutional Neural Networks 2

Xiaolong Wang

This Class

• Data Augmentation and Pre-processing

• Weight Initialization

• Batch Normalization

• Regularization in Training Deep Networks

Images partially from: http://cs231n.stanford.edu/, https://slazebni.cs.illinois.edu/fall20/

http://cs231n.stanford.edu/
https://slazebni.cs.illinois.edu/fall20/

Data Augmentation and Pre-processing

Data Pre-Processing

Input data Zero-centered data
𝑋 = 𝑋 −𝑚𝑒𝑎𝑛(𝑋)

normalized data

𝑋 =
𝑋

𝑠𝑡𝑑(𝑋)

Data Pre-Processing

• Subtract mean and divide the std is optional if we have batch
normalization (will introduce later)

• Should maintain the same input process for both training and
testing

Data Augmentation

• Data augmentation is a free way to increase training data

• Prevent overfitting

• Improve performance

ConvNetData
AugmentationImage Classification

Data Augmentation for Classification

• Horizontal Flip (useful)

Data Augmentation for Classification

• Random Crop (critical)

Data Augmentation for Classification

• Color augmentation, brightness, contrast (can ignore)

Data Augmentation for Classification

• Rotation (sometimes useful, especially for pose estimation)

Data Augmentation for Classification

• Training:
• Pick a random L in range [256, 480]
• Resize the image, the short side is resized to length L, maintaining the

original aspect ratio
• Randomly crop an [224, 224] patch out of the image

• Testing:
• Resize the image, the short side is resized to length 256
• Crop an [224, 224] patch from the center of the image

Weight Initialization

Gaussian Initialization

• Gaussian initialization with zero mean and 1e-2 standard
deviation

• np.random.randn samples from a gaussian distribution with
zero mean and 1 std

Gaussian Initialization

Gaussian Initialization

• The magnitude of the activations become smaller and smaller
for higher layers

• We want the magnitude to be maintained over the layers

Why is it important to maintain the
magnitude of activations?

Layer 𝑘

Compute !"!
!#!

Compute !"!
!"!"#

𝜕𝑒
𝜕ℎ$

𝜕𝑒
𝜕ℎ$%&

=
𝜕𝑒
𝜕ℎ$

𝜕ℎ$
𝜕ℎ$%&

𝜕𝑒
𝜕𝑊$

=
𝜕𝑒
𝜕ℎ$

𝜕ℎ$
𝜕𝑊$

activations

Xavier Initialization

Batch Normalization

Batch Normalization

• Explicitly enforce each layer to have zero-mean and unit-
variance outputs

• A basic version of batch norm:

'𝑥 =
𝑥 − 𝐸 𝑥
𝑉𝑎𝑟[𝑥]

Batch Normalization for FC layer

Input: 𝑥 ∈ ℝ! × # 𝜇- =
1
𝑁
%
./0

1

𝑥.,-

𝜎-3 =
1
𝑁
%
./0

1

𝑥.,- − 𝜇-
3

)𝑥.,- =
𝑥.,- − 𝜇-

𝜎-3 + 𝜀

Compute mean for
each channel 𝜇 ∈ ℝ4

Compute variance for
each channel 𝜎! ∈ ℝ4

Normalize 𝑥 ∈ ℝ1×4

Batch Normalization for FC layer

Input: 𝑥 ∈ ℝ! × # 𝜇- =
1
𝑁
%
./0

1

𝑥.,-

𝜎-3 =
1
𝑁
%
./0

1

𝑥.,- − 𝜇-
3

)𝑥.,- =
𝑥.,- − 𝜇-

𝜎-3 + 𝜀

𝑦.,- = 𝛾-)𝑥.,- + 𝛽-

Compute mean for
each channel 𝜇 ∈ ℝ4

Compute variance for
each channel 𝜎! ∈ ℝ4

Normalize 𝑥 ∈ ℝ1×4

Scale with learnable
parameters 𝛾 ∈ ℝ4, 𝛽 ∈ ℝ4

During Test Time

Input: 𝑥 ∈ ℝ! × # 𝜇- =
1
𝑁
%
./0

1

𝑥.,-

𝜎-3 =
1
𝑁
%
./0

1

𝑥.,- − 𝜇-
3

)𝑥.,- =
𝑥.,- − 𝜇-

𝜎-3 + 𝜀

𝑦.,- = 𝛾-)𝑥.,- + 𝛽-

A running average of 𝜇
during training

A running average of 𝜎!
during training

Normalize 𝑥 ∈ ℝ1×4

Scale with learnable
parameters 𝛾 ∈ ℝ4, 𝛽 ∈ ℝ4

During Test Time

Input: 𝑥 ∈ ℝ! × # A running average of 𝜇 during training:

'𝜇(= 𝛼 '𝜇(%& + 1 − 𝛼 𝜇(%&

A running average of 𝜎) during training:

'𝜎() = 𝛼 '𝜎(%&) + 1 − 𝛼 𝜎(%&)

Batch Normalization in Deep Networks

FC

BN

ReLU

FC

BN

ReLU

Conv

BN

ReLU

Conv

BN

ReLU

Batch Normalization for ConvNets
ConvNetsMLPs

Other Normalization layers
• Layer normalization (Ba et al., 2016)
• Instance normalization (Ulyanov et al., 2017)
• Group normalization (Wu and He, 2018)

Y. Wu and K. He, Group Normalization, ECCV 2018

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Regularization

Prevent overfitting: L2 regularization

• Adding regularization in training objective, L2 regularization:

5𝐿 𝑊 = *
)
𝑊) + &

+
∑,-&+ 𝐿(𝑊, 𝑥, , 𝑦,)

𝑊 ← 𝑊 − 𝛼 (𝜆 𝑊 + ∇#
1
𝑛
@
,-&

+

𝐿 𝑊, 𝑥, , 𝑦,)

L2 regularization Loss from data

Prevent overfitting: L2 regularization

𝑊 ← 𝑊 − 𝛼 (𝜆 𝑊 + ∇#
1
𝑛
@
,-&

+

𝐿 𝑊, 𝑥, , 𝑦,)

Gradients from
L2 regularization

Also called weight decay

We usually set 𝜆 = 0.00005

Dropout

• At training time, in each forward pass, turn off some neurons
with probability p

• Usually set p = 0.5

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

• During test time, do not apply dropout but multiply all the output
by p to maintain the same magnitude of activations

Why Dropout

• Increase robustness to noise
• Implicitly training multiple different networks, and test with

multiple network ensamble

Dropout

• Not used a lot currently in training

• Less useful when the dataset is large and applying data
augmentation

• Still useful when training with video dataset/task since there is
less data than image datasets

This Class

• Data Augmentation and Pre-processing

• Weight Initialization

• Batch Normalization

• Regularization in Training Deep Networks

Next Class

Convolutional Neural Networks architectures

