Different Elements in Training
Convolutional Neural Networks 2

Xiaolong Wang

This Class

» Data Augmentation and Pre-processing
» Weight Initialization
» Batch Normalization

* Regularization in Training Deep Networks

Images partially from: http://cs231n.stanford.edu/, htips://slazebni.cs.illinois.edu/fall20/

http://cs231n.stanford.edu/
https://slazebni.cs.illinois.edu/fall20/

Data Augmentation and Pre-processing

Data Pre-Processing

10 10
5 3 1
0 - 0
-5 -3
k3
-lqw > 1q _1910 -5 0 5

Zero-centered data

Input data X =X —mean(X)

10

~-10

-10

-5 0 5

normalized data
X

X = Sd

10

Data Pre-Processing

* Subtract mean and divide the std is optional if we have batch
normalization (will introduce later)

« Should maintain the same input process for both training and
testing

Data Augmentation

« Data augmentation is a free way to increase training data
* Prevent overfitting

* Improve performance

4 N N

Image —> DEIE — ConvNet — Classification

Augmentation

o 2N /

Data Augmentation for Classification

* Horizontal Flip (useful)

Data Augmentation for Classification

« Random Crop (critical)

Data Augmentation for Classification

 Color augmentation, brightness, contrast (can ignore)

Data Augmentation for Classification

» Rotation (sometimes useful, especially for pose estimation)

b-iw/ w\' b s
£ o) B %
\~_ iA. ! \& ".i\-" (} ’\A

i

5

L5

v
-
-
»
-
i
-, -
~ -

”
=S 5. ‘ k l \
& &
N . Rl
y&s | |

Data Augmentation for Classification

* Training:
* Pick a random L in range [256, 480]

» Resize the image, the short side is resized to length L, maintaining the
original aspect ratio

« Randomly crop an [224, 224] patch out of the image

* Testing:
» Resize the image, the short side is resized to length 256
« Crop an [224, 224] patch from the center of the image

Weight Initialization

Gaussian Initialization

e Gaussian initialization with zero mean and 1e-2 standard
deviation

W= 0.0l * np.random.randn(Din, Dout)

* np.random.randn samples from a gaussian distribution with
zero mean and 1 std

Gaussian Initialization

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

Xx = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):
W= 0.01 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.49 std=0.29 std=0.18 std=0.11

Layer 5 Layer 6
mean=-0.00 mean=0.00
std=0.07 std=0.05

Gaussian Initialization

* The magnitude of the activations become smaller and smaller
for higher layers

* We want the magnitude to be maintained over the layers

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Why is it important to maintain the

magnitude of activations?

de de|dhy
oW, Ohy oW,
de de OJdh,

oh,_, 0OhyOh,_;

activations

a dhy I

Compute P

Layer k

Ohp

Ohg—1 /

Compute

\l

oh,

Xavier Initialization

dims = [4096] * 7 “Xavier” initialization:
hs = [] std = 1/sqrt(Din)

X = np.random.randn(1l6, dims[0])

for L L] 5 J =

= np.random.randn(Din

X np.tanh(x.dot(W))

hs.append (x)
Layer 1 Layer 2 Layer 3 Layer 4
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00

std=0.63 std=0.49 std=0.41 std=0.36

Layer 5
mean=0.00
std=0.32

Layer 6
mean=-0.00
std=0.30

Batch Normalization

Batch Normalization

» Explicitly enforce each layer to have zero-mean and unit-
variance outputs

* A basic version of batch norm:

x — E|x]
\/ Var|x]

X =

Batch Normalization for FC layer

Input: x € RV *P

N
1
O

=1

1 N
2
=5 .G = w)
=1

Compute mean for
each channel u € RP

Compute variance for
each channel ¢2 € RP

Normalize x € RN XD

Batch Normalization for FC layer

N
1
O

Input: x € RNV *P

YVij =

=1

Compute mean for
each channel u € RP

Compute variance for
each channel ¢2 € RP

Normalize x € RN XD

Scale with learnable
parameters y € RP, 5 € RP

During Test Time

A running average of u

Input: x € RNV *P Inning a
during training

A running average of ¢
during training

Xij=—= Normalize x € RN %P

D Scale with learnable
Vij = VjXijtBj parameters y € RP, 8 € RP

During Test Time

Input: x € RN xD A running average of u during training:

by =afli1 + (1 —a)p—4
N X A running average of oZ during training:

6f = adiy + (1 — a)ai,

Batch Normalization in Deep Networks

BN

RelLU

Conv

BN

RelLU

__conv
¥
BN
¥
__ RelU
¥
__conv
¥
BN
¥
__ RelU

Batch Normalization for ConvNets

MLPs ConvNets

x= N x B X: NXCxHXW
Normalize * Normalize l ‘ ‘
M,0: 1 x D M,0: 1xCxl1lxl
Y,B: 1 x D Y,B: 1xCx1x1

y = Y(x-M) /0o+B y = Y(x-M) /0+B

Other Normalization layers

Layer normalization (Ba et al., 2016)
« Instance normalization (Ulyanov et al., 2017)
Group normalization (Wu and He, 2018)

Batch Norm Layer Norm Instance Norm Group Norm

Y
VANV
R

R
VORI
Z W

Y. Wu and K. He, Group Normalization, ECCV 2018

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Regularization

Prevent overfitting: L2 regularization

» Adding regularization in training objective, L2 regularization:

- 1 2 1
L(W) = E“Wll + ;Z?=1L(W;xi;3’i)

L2 regularization Loss from data

!

n
1
W « W—a(AW+VWEZL(W,Xi,yi))
i=1

Prevent overfitting: L2 regularization

n
1
WeW—a(Aw +vWEZL(W,xi,yi))
=1

Gradients from
L2 regularization

!

Also called weight decay

We usually set A = 0.00005

Dropout

* At training time, in each forward pass, turn off some neurons
with probability p

* Usually set p =0.5

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

 During test time, do not apply dropout but multiply all the output
by p to maintain the same magnitude of activations

Why Dropout

* Increase robustness to noise

* Implicitly training multiple different networks, and test with
multiple network ensamble

Dropout

* Not used a lot currently in training

 Less useful when the dataset is large and applying data
augmentation

o Still useful when training with video dataset/task since there is
less data than image datasets

This Class

» Data Augmentation and Pre-processing
» Weight Initialization
» Batch Normalization

* Regularization in Training Deep Networks

Next Class

Convolutional Neural Networks architectures

