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Data Augmentation and Pre-processing



Data Pre-Processing

Input data Zero-centered data
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Data Pre-Processing

• Subtract mean and divide the std is optional if we have batch 
normalization (will introduce later)

• Should maintain the same input process for both training and 
testing



Data Augmentation

• Data augmentation is a free way to increase training data

• Prevent overfitting

• Improve performance

ConvNetData
AugmentationImage Classification



Data Augmentation for Classification

• Horizontal Flip (useful)



Data Augmentation for Classification

• Random Crop (critical)



Data Augmentation for Classification

• Color augmentation, brightness, contrast (can ignore)



Data Augmentation for Classification

• Rotation (sometimes useful, especially for pose estimation)



Data Augmentation for Classification

• Training:
• Pick a random L in range [256, 480]
• Resize the image, the short side is resized to length L, maintaining the 

original aspect ratio
• Randomly crop an [224, 224] patch out of the image 

• Testing:
• Resize the image, the short side is resized to length 256
• Crop an [224, 224] patch from the center of the image 



Weight Initialization



Gaussian Initialization

• Gaussian initialization with zero mean and 1e-2 standard 
deviation

• np.random.randn samples from a gaussian distribution with 
zero mean and 1 std



Gaussian Initialization



Gaussian Initialization

• The magnitude of the activations become smaller and smaller 
for higher layers

• We want the magnitude to be maintained over the layers



Why is it important to maintain the 
magnitude of activations?
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Xavier Initialization



Batch Normalization



Batch Normalization

• Explicitly enforce each layer to have zero-mean and unit-
variance outputs

• A basic version of batch norm:

'𝑥 =
𝑥 − 𝐸 𝑥
𝑉𝑎𝑟[𝑥]



Batch Normalization for FC layer
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Batch Normalization for FC layer
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During Test Time
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During Test Time

Input: 𝑥 ∈ ℝ! × # A running average of 𝜇 during training:
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Batch Normalization in Deep Networks
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Batch Normalization for ConvNets
ConvNetsMLPs



Other Normalization layers
• Layer normalization (Ba et al., 2016)
• Instance normalization (Ulyanov et al., 2017)
• Group normalization (Wu and He, 2018)

Y. Wu and K. He, Group Normalization, ECCV 2018

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf


Regularization



Prevent overfitting: L2 regularization 

• Adding regularization in training objective, L2 regularization: 
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Prevent overfitting: L2 regularization 
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Gradients from 
L2 regularization

Also called weight decay

We usually set 𝜆 = 0.00005



Dropout

• At training time, in each forward pass, turn off some neurons 
with probability p

• Usually set p = 0.5

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov. 
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


Dropout

• During test time, do not apply dropout but multiply all the output 
by p to maintain the same magnitude of activations 



Why Dropout

• Increase robustness to noise
• Implicitly training multiple different networks, and test with 

multiple network ensamble



Dropout

• Not used a lot currently in training 

• Less useful when the dataset is large and applying data 
augmentation

• Still useful when training with video dataset/task since there is 
less data than image datasets
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• Data Augmentation and Pre-processing
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• Regularization in Training Deep Networks



Next Class

Convolutional Neural Networks architectures


