Different Elements in Training
Convolutional Neural Networks 2

Xiaolong Wang



This Class

» Data Augmentation and Pre-processing
» Weight Initialization
» Batch Normalization

* Regularization in Training Deep Networks
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Data Augmentation and Pre-processing



Data Pre-Processing
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Data Pre-Processing

* Subtract mean and divide the std is optional if we have batch
normalization (will introduce later)

« Should maintain the same input process for both training and
testing



Data Augmentation

« Data augmentation is a free way to increase training data
* Prevent overfitting

* Improve performance
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Data Augmentation for Classification

* Horizontal Flip (useful)




Data Augmentation for Classification

« Random Crop (critical)



Data Augmentation for Classification

 Color augmentation, brightness, contrast (can ignore)




Data Augmentation for Classification

» Rotation (sometimes useful, especially for pose estimation)
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Data Augmentation for Classification

* Training:
* Pick a random L in range [256, 480]

» Resize the image, the short side is resized to length L, maintaining the
original aspect ratio

« Randomly crop an [224, 224] patch out of the image

* Testing:
» Resize the image, the short side is resized to length 256
« Crop an [224, 224] patch from the center of the image



Weight Initialization



Gaussian Initialization

e Gaussian initialization with zero mean and 1e-2 standard
deviation

W= 0.0l * np.random.randn(Din, Dout)

* np.random.randn samples from a gaussian distribution with
zero mean and 1 std



Gaussian Initialization

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

Xx = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):
W= 0.01 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.49 std=0.29 std=0.18 std=0.11

Layer 5 Layer 6
mean=-0.00 mean=0.00
std=0.07 std=0.05




Gaussian Initialization

* The magnitude of the activations become smaller and smaller
for higher layers

* We want the magnitude to be maintained over the layers

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05




Why is it important to maintain the

magnitude of activations?
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Xavier Initialization

dims = [4096] * 7 “Xavier” initialization:
hs = [] std = 1/sqrt(Din)

X = np.random.randn(1l6, dims[0])

for L L] 5 J =

= np.random.randn(Din

X np.tanh(x.dot(W))

hs.append (x)
Layer 1 Layer 2 Layer 3 Layer 4
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00

std=0.63 std=0.49 std=0.41 std=0.36

Layer 5
mean=0.00
std=0.32

Layer 6
mean=-0.00
std=0.30




Batch Normalization



Batch Normalization

» Explicitly enforce each layer to have zero-mean and unit-
variance outputs

* A basic version of batch norm:
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Batch Normalization for FC layer

Input: x € RV *P
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Batch Normalization for FC layer
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Compute mean for
each channel u € RP

Compute variance for
each channel ¢2 € RP

Normalize x € RN XD

Scale with learnable
parameters y € RP, 5 € RP



During Test Time

A running average of u

Input: x € RNV *P Inning a
during training

A running average of ¢
during training

Xij=—= Normalize x € RN %P

D Scale with learnable
Vij = VjXijtBj parameters y € RP, 8 € RP



During Test Time

Input: x € RN xD A running average of u during training:

by =afli1 + (1 —a)p—4
N X A running average of oZ during training:

6f = adiy + (1 — a)ai,




Batch Normalization in Deep Networks
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Batch Normalization for ConvNets

MLPs ConvNets

x= N x B X: NXCxHXW
Normalize * Normalize l ‘ ‘
M,0: 1 x D M,0: 1xCxl1lxl
Y,B: 1 x D Y,B: 1xCx1x1

y = Y(x-M) /0o+B y = Y(x-M) /0+B



Other Normalization layers

Layer normalization (Ba et al., 2016)
« Instance normalization (Ulyanov et al., 2017)
Group normalization (Wu and He, 2018)

Batch Norm Layer Norm Instance Norm Group Norm
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Y. Wu and K. He, Group Normalization, ECCV 2018



https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.08022.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf
https://openaccess.thecvf.com/content_ECCV_2018/papers/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.pdf

Regularization



Prevent overfitting: L2 regularization

» Adding regularization in training objective, L2 regularization:

- 1 2 1
L(W) = E“Wll + ;Z?=1L(W;xi;3’i)

L2 regularization Loss from data
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Prevent overfitting: L2 regularization

n
1
WeW—a(Aw +vWEZL(W,xi,yi))
=1

Gradients from
L2 regularization

!

Also called weight decay

We usually set A = 0.00005



Dropout

* At training time, in each forward pass, turn off some neurons
with probability p

* Usually set p =0.5

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 2014



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

 During test time, do not apply dropout but multiply all the output
by p to maintain the same magnitude of activations




Why Dropout

* Increase robustness to noise

* Implicitly training multiple different networks, and test with
multiple network ensamble




Dropout

* Not used a lot currently in training

 Less useful when the dataset is large and applying data
augmentation

o Still useful when training with video dataset/task since there is
less data than image datasets
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Next Class

Convolutional Neural Networks architectures



