
Convolutional Neural 
Networks Architectures

Xiaolong Wang



This Class

• Finetuning with CNN

• The developments and insights of CNN architectures

Slides partially from: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Finetuning CNN



Given an ImageNet Pre-trained Network



Finetune an ImageNet Pre-trained Network

Remove and replace 
with another randomly 
initialized layer

If the target dataset is 
Cifar-10, we should 
change the network 
output to 10 as well



Finetune an ImageNet Pre-trained Network

Freeze these layers

Train this layer

If we have a small dataset during fine-tuning, for example a dataset 
with a few hundred examples, we should freeze most layers.



Finetune an ImageNet Pre-trained Network

Freeze these layers

Train these layers (only re-initialize the last layer)

If we have a relatively larger dataset, for example a dataset with 
thousands of examples, we can tune more layers.



Finetune an ImageNet Pre-trained Network

Train these layers (only re-initialize the last layer)

If we have a large dataset, for example a dataset with tens of 
thousands of examples, we can tune all layers.



Fine-tuning and Pre-training

• When fine-tuning, try to see how 
many layers you need to tune, it is 
task dependent.

• If you have a very large dataset to 
fine-tune on already, the pre-training 
step might not be always necessary.

He et al, “Rethinking ImageNet Pre-training”, ICCV 2019



CNN Architectures



ImageNet Performance



AlexNet

• Input: 227 x 227 x 3 image

• First layer (Conv1): 96 11x11 filters applied at stride 4
• Output size of first layer: (227 - 11) / 4 + 1 = 55

Conv1 -> Maxpool -> Conv2 -> Maxpool -> Conv3 -> Conv4 -> Conv5 -> 
Maxpool -> FC6 -> FC7 -> FC8



AlexNet

• Learned filters for Conv1

Conv1 -> Maxpool -> Conv2 -> Maxpool -> Conv3 -> Conv4 -> Conv5 -> 
Maxpool -> FC6 -> FC7 -> FC8



AlexNet

• Input: 55 x 55 x 96 feature map

• Second layer (Maxpool): 3 x 3 filters applied at stride 2
• Output size of second layer: (55 - 3) / 2 + 1 = 27

Conv1 -> Maxpool -> Conv2 -> Maxpool -> Conv3 -> Conv4 -> Conv5 -> 
Maxpool -> FC6 -> FC7 -> FC8



AlexNet

• Input for FC6: 6 x 6 x 256 feature map

• Output for FC6: 4096. Since the layer is fully-connected, the 
number of parameter is: 6 x 6 x 256 x 4096 = 38 million 

Conv1 -> Maxpool -> Conv2 -> Maxpool -> Conv3 -> Conv4 -> Conv5 -> 
Maxpool -> FC6 -> FC7 -> FC8



ImageNet Performance



VGGNet

• AlexNet: Larger filters, less 
layers (8 layers).

• VGG: smaller filters, more 
layers (16 or 19 layers). 



VGGNet

• A stack of three 3x3 conv 
filters has the same receptive 
field as a 7x7 conv filter

• Three 3x3 conv filters have 
more non-linear 
transformation



VGGNet-Receptive Fields



VGGNet-Receptive Fields



VGGNet-Receptive Fields



VGGNet-Receptive Fields



VGGNet-Receptive Fields



VGGNet

• A general direction: Going 
deeper with 3x3 convolution



ImageNet Performance



GoogleNet

• Apply multiple filters in 
parallel 

• Concat the results of multiple 
filters for the next layer



GoogleNet -- A naive inception module

Module input: 
28x28x256

Output:
28x28x128

Output:
28x28x192

Output:
28x28x96

Output:
28x28x256

• Take 3x3 convolution 
as an example:

• Filter size: 
3x3x192x256

• Conv Ops: 
28x28x3x3x192x256

Can we reduce the computation?



1 x 1 convolutions: dimension reduction



GoogleNet



GoogleNet

Module input: 
28x28x256

Output:
28x28x128

Output:
28x28x192

Output:
28x28x96

Output:
28x28x256

Output:
28x28x64

Output:
28x28x64

Output:
28x28x64

• Take 3x3 + 1x1 
convolutions as an 
example:

• Filter size:   
3x3x192x64    
1x1x64x256

• Conv Ops: 
28x28x3x3x192x64 
28x28x1x1x64x256

Previous: 28x28x3x3x192x256



ImageNet Performance



ResNet

𝑦 = 𝐹 𝑥 + 𝑥



How is ResNet developed?

• Simplifying GoogleNet Inception module!

GoogleNet VGG16ResNet



How is ResNet developed?

• Simplifying Inception module!



BottleNeck with 1x1 convolution



ResNeXt

Looks familiar?



ResNeXt



Compare ResNet and ResNeXt

• Performance: ResNeXt will give 1 to 2% improvement in 
general in many recognition tasks

• Efficiency: ResNeXt is much slower, 1.5 times to 2 times slower 
(Group Conv was not very well optimized)



About Groups



Group Norm



This Class

• Fine-tuning CNN

• Different network architectures

• Design trend of the architectures



Next Class

Semantic Segmentation


