Introduction to Visual Learning

ECE 285

Xiaolong Wang xiw012@ucsd.edu

Location: Ledden Auditorium

Zoom: https://ucsd.zoom.us/my/xiaolonw

Website: https://xiaolonw.github.io/ece285/sp24/

- Assignments:
 - 4 Homeworks, each 15%
- Final Project:
 - Project proposal, 10%
 - Project report, 30%

- TAs:
 - Nicklas Hansen: nihansen@ucsd.edu
 - Jiteng Mu: jmu@ucsd.edu
 - Isabella Liu: lal005@ucsd.edu
 - Ruihan Yang: ruy002@ucsd.edu

Office Hour, starting next week:

- Monday, 10:00 am 11:00 am
- Friday, 4:00 pm 5:00 pm
- (This Friday office hour: Datahub Tutorial: https://ucsd.zoom.us/my/xiaolonw)
- Location: FAH 3rd floor

- Canvas (https://canvas.ucsd.edu/courses/54705):
 - Announcements
 - Zoom recordings
 - Slides and assignments
- Piazza:
 - https://piazza.com/class/lufze9ni5mh6nv/
 - Discussions
 - Slides
- GradeScope:
 - https://www.gradescope.com/courses/760926
 - Entry Code: **B2J2RD**
 - Submit assignments

Date	Lecture	Materials	Assignments
Apr 2	Introduction to Visual Learning	Lecture 1	
Apr 4	Image Classification: K-NN and Linear Classifier	Lecture 2	
Apr 9	Multi-Layer Perceptrons and Back-Propagation	Lecture 3	Assignment 1
Apr 11	Convolutional Neural Networks 1	Lecture 4	
Apr 16	Convolutional Neural Networks 2	Lecture 5	
Apr 18	Tutorial on Pytorch	Tutorial Notebook	Assignment 2
Apr 23	Image Segmentation and Visualization	Lecture 7	Assignment 1 due
Apr 25	Object Detection	Lecture 8	
Apr 30	Recurrent Neural Networks	Lecture 9	
May 2	Video Recognition	Lecture 10	Project Proposal Due
May 7	Video Prediction	Lecture 11	Assignment 3
May 9	Self-Attention, Graph Networks, Transformer	Lecture 12	Assignment 2 due
May 14	Vision Transformer	Lecture 13	
May 16	Generative Adversarial Networks	Lecture 14	
May 21	Conditional GAN and Variational Auto-Encoders	Lecture 15	Assignment 4
May 23	Deep 3D Vision	Lecture 16	Assignment 3 due
May 28	Few-Shot and Zero-Shot Learning	Lecture 17	
Мау 30	Multi-Task, Adaptation, Transfer	Lecture 18	
June 4	Self-Supervised Visual Representation Learning	Lecture 19	
June 6	Contrastive Learning	Lecture 20	Assignment 4 due

Final Project

https://docs.google.com/document/d/1aByplfb_VHFHTaFdZe2TBZXJQx1AR5Zhj3s4S7IGJ_A/edit?usp=sharing

Cannot re-use existing project that is online.

Class Interaction

Please interrupt and ask questions all the time!

Computer Vision with Deep Learning

What is learning?

• The power of learning lies in generalization

Training Data Test Data

Histograms of Oriented Gradients. Dalal et al. 2005

Discriminatively trained Part-based Models. Felzenszwalb et al. 2009

Discriminatively trained Part-based Models. Felzenszwalb et al. 2009

- More Layers
 - Previous method: 1-layer classifier (HoG), 2-layer classifier (DPM)
 - Deep Networks: 100, 1000 layers.
- End-to-End Training
 - Previous method: Training each layer of classifier individually.
 - Deep Networks: Training with back-propagation.

Different Types of Deep Networks

- Multilayer perceptron (MLP)
 - Input image I size : 32 x 32 = 1024
 - First hidden layer h_1 output size: 2000
 - First layer parameters W₁ size: 1024 x 2000
 - $h_1 = I W_1$

Different Types of Deep Networks

The ImageNet Challenge

Russakovsky et al. 2015

The ImageNet Challenge

Where does the 5% error human performance come from?

Many-Layer Networks

ResNets

Object Detection/Segmentation

Human Pose Estimation

Mask R-CNN. He et al. 2017.

Image Captioning

Karpathy et al. 2015.

Image generation

BigGAN. Brock et al. 2019.

Image generation

Image generation with diffusion models

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

Recurrent Neural Networks

```
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.
Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.
Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.
Clown:
Come, sir, I will make did behold your worship.
VIOLA:
I'll drink it.
```

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Language: Transformer, GPT-4

https://github.com/features/copilot

Transformer

Dosovitskiy et al., 2021

3D Vision: 3D mesh reconstruction from images

Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.

3D Vision: Implicit Function

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.

3D Vision: Neural Radiance Fields

Mildenhall et al. 2020.

Action Recognition

Video Prediction

Physical Interaction Prediction

Statistical learning, Training and Testing

- Training: Learning from the past experience:
 - training dataset
 - demonstrations

- Testing: Generalize to unseen inputs
 - Data that does not exist in training set

Image Classification

input desired output

apple

pear

tomato

COW

dog

horse

Image Classification

input desired output

apple

pear

tomato

COW

dog

horse

training data

apple

pear

tomato

COW

dog

horse

Credit: Svetlana Lazebnik

Supervised Learning

- Training (or learning): given a *training set* of labeled examples $\{(x_1, y_1), ..., (x_N, y_N)\}$, train a neural network predictor f
- **Testing** (or **inference**): apply neural network f to a new *test* example x and output the predicted value y = f(x)

Transfer Learning

Self-Supervised Learning

[Gidaris et al. 2018]

Self-Supervised Learning with Rotation Prediction

Self-Supervised Learning with MAE

This Class

Computer Vision Research with Deep Learning

Training and Testing

Coming Tutorial

 There will be a tutorial on how to do/submit assignments This Friday, 4:00 - 5:00 pm PST on zoom

We will use the compute resources in https://datahub.ucsd.edu/