Introduction to Visual Learning

ECE 285

Xiaolong Wang xiw012@ucsd.edu

- Location: WLH 2005
- Zoom: https://ucsd.zoom.us/my/xiaolonw
- Website: https://xiaolonw.github.io/ece285/sp25/
- Assignments:
 - 4 Homeworks, each 15%
- Final Project:
 - Project proposal, 10%
 - Project report, 30%

- TAs:
 - An-Chieh Cheng: <u>a8cheng@ucsd.edu</u>
 - Yandong Ji: <u>yaj011@ucsd.edu</u>

Additional Helps:

- Jiarui Xu: jix026@ucsd.edu
- Yinbo Chen: <u>yic026@ucsd.edu</u>

Office Hour, starting next week:

- Monday, 10:00 am 11:00 am
- Wed, 3:00 pm 4:00 pm
- (This Wed office hour: Datahub Tutorial: <u>https://ucsd.zoom.us/my/xiaolonw</u>)
- Location: FAH 3rd floor

- Canvas (https://canvas.ucsd.edu/courses/64399):
 - Announcements
 - Zoom recordings
 - Slides and assignments
- Piazza:
 - https://piazza.com/class/m8v9d7mwqh23gi
 - Discussions
 - Slides
- GradeScope:
 - <u>https://www.gradescope.com/courses/1012765</u>
 - Entry Code: 42J4YN
 - Submit assignments

Prerequisite

- know how to use python for programing
- linear algebra

Date	Lecture	Materials	Assignments
Apr 1	Introduction to Visual Learning	Lecture 1	
Apr 3	Image Classification: K-NN and Linear Classifier	Lecture 2	
Apr 8	Multi-Layer Perceptrons and Back-Propagation	Lecture 3	Assignment 1
Apr 10	Convolutional Neural Networks 1	Lecture 4	
Apr 15	Convolutional Neural Networks 2	Lecture 5	
Apr 17	Tutorial on Pytorch	Tutorial Notebook	Assignment 2
Apr 22	Image Segmentation and Visualization	Lecture 7	Assignment 1 due
Apr 24	Object Detection	Lecture 8	
Apr 29	Recurrent Neural Networks	Lecture 9	
May 1	Video Recognition	Lecture 10	Project Proposal Due
May 6	Video Prediction	Lecture 11	Assignment 3
May 8	Self-Attention, Graph Networks, Transformer	Lecture 12	Assignment 2 due
May 13	Vision Transformer	Lecture 13	
May 15	Generative Adversarial Networks	Lecture 14	
May 20	Conditional GAN and Variational Auto-Encoders	Lecture 15	Assignment 4
May 22	Deep 3D Vision	Lecture 16	Assignment 3 due
May 27	Diffusion Models	Lecture 17	
May 29	Multi-Task, Adaptation, Transfer Learning	Lecture 18	
June 3	Self-supervised Learning	Lecture 19	
June 5	Neural Radiance Fields	Lecture 20	Assignment 4 due

Final Project

https://docs.google.com/document/d/1aByplfb_VHFHTaFdZe2TB ZXJQx1AR5Zhj3s4S7IGJ_A/edit?usp=sharing

Cannot re-use existing project that is online.

Class Interaction

Please interrupt and ask questions all the time!

Computer Vision with Deep Learning

What is learning?

• The power of learning lies in generalization

Training Data

Test Data

Viola et al. 2001

Histograms of Oriented Gradients. Dalal et al. 2005

Histograms of Oriented Gradients. Dalal et al. 2005

Discriminatively trained Part-based Models. Felzenszwalb et al. 2009

Discriminatively trained Part-based Models. Felzenszwalb et al. 2009

- More Layers
 - Previous method: 1-layer classifier (HoG), 2-layer classifier (DPM)
 - Deep Networks: 100, 1000 layers.
- End-to-End Training
 - Previous method: Training each layer of classifier individually.
 - Deep Networks: Training with back-propagation.

Different Types of Deep Networks

- Multilayer perceptron (MLP)
 - Input image *I* size : 32 x 32 = 1024
 - First hidden layer h_1 output size: 2000
 - First layer parameters W₁ size: 1024 x 2000
 - $h_1 = I W_1$

Different Types of Deep Networks

The ImageNet Challenge

Russakovsky et al. 2015

The ImageNet Challenge

ImageNet Classification Error (Top 5)

Where does the 5% error human performance come from?

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Many-Layer Networks

ResNets

Object Detection/Segmentation

Mask R-CNN. He et al. 2017.

Human Pose Estimation

Mask R-CNN. He et al. 2017.

Image Captioning

Karpathy et al. 2015.

Image generation

BigGAN. Brock et al. 2019.

Image generation

StyleGAN. Karras et al. 2018.

Image generation with diffusion models

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

Recurrent Neural Networks

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA: I'll drink it.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Language: Transformer, GPT-4

Bing: Chat with AI & GPT-4 17+ Powered by ChatGPT's GPT-4

Microsoft Corporation

#48 in Productivity ***** 4.8 • 56 Ratings

Free

	GITHUB COPILOT: CHAT	🇬 parse_expenses.py 🗙	$m{\it a}$ addresses.rb $ imes$	$\scriptstyle\scriptstyle m IS$ sentiments.ts $ imes$			
	🛞 GitHub Copilot	1 import datetime					
	Hi @monalisa, how can I help you?						
	I'm powered by AI, so surprises and mistakes are possible. Make sure						
	that we can learn and improve.			N			
				4			
G							
	Ask a question or type '/' for commands						

Transformer

Dosovitskiy et al., 2021

3D Vision: 3D mesh reconstruction from images

Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.

3D Vision: Implicit Function

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.

3D Vision: Neural Radiance Fields

Mildenhall et al. 2020.

Action Recognition

Video Prediction

Input frames

Ground truth

 ℓ_2 result

 ℓ_1 result

GDL ℓ_1 result

Adversarial result

Adversarial+GDL result

Physical Interaction Prediction

Qi et al., 2021

Statistical learning, Training and Testing

- Training: Learning from the past experience:
 - training dataset
 - demonstrations

- Testing: Generalize to unseen inputs
 - Data that does not exist in training set

Image Classification

Credit: Svetlana Lazebnik

Image Classification

training data

apple pear tomato COW dog horse

Credit: Svetlana Lazebnik

Credit: Svetlana Lazebnik

Supervised Learning y = f(x) $\int_{\text{output}}_{\text{neural}}_{\text{network}}$ input $\int_{\text{neural}}_{\text{network}}_{\text{image}}$

- **Training** (or **learning**): given a *training set* of labeled examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$, train a neural network predictor f
- **Testing** (or **inference**): apply neural network f to a new *test* example x and output the predicted value y = f(x)

Transfer Learning

Self-Supervised Learning

[Gidaris et al. 2018]

Self-Supervised Learning with Rotation Prediction

Self-Supervised Learning with MAE

He et al. 2022

This Class

- Computer Vision Research with Deep Learning
- Training and Testing

Coming Tutorial

- There will be a tutorial on how to do/submit assignments This Wednesday, 3:00 - 4:00 pm PST on zoom
- We will use the compute resources in https://datahub.ucsd.edu/