Self-Attention, Graph Networks, Transformer

Xiaolong Wang

This Class

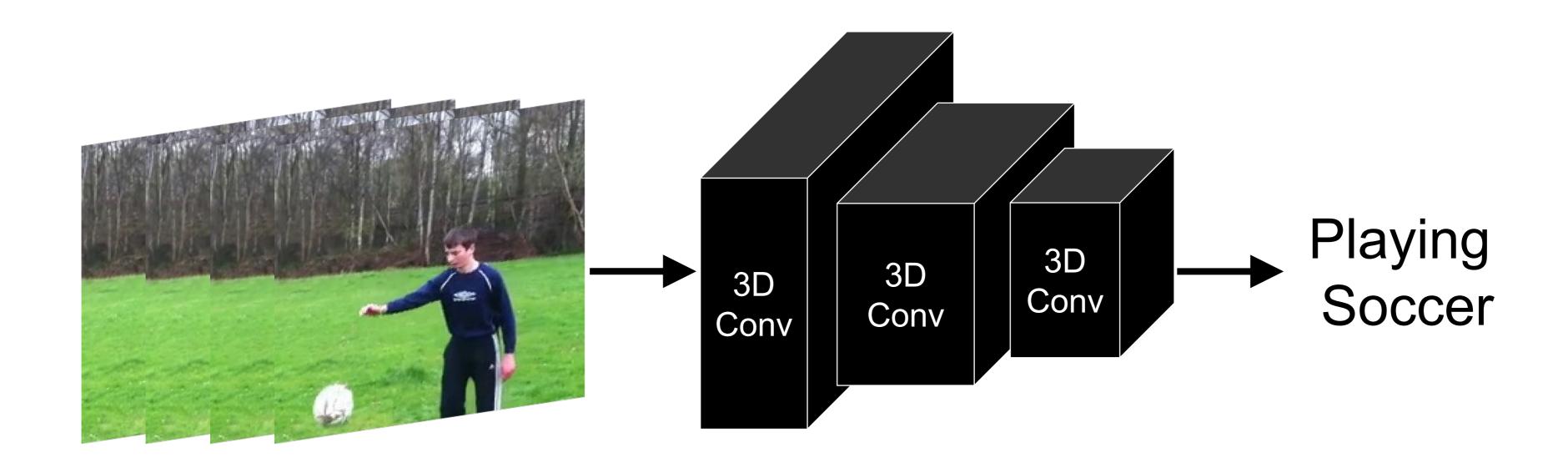
Non-local Neural Network for Videos

Self-Attention and Transformer for NLP

Graph Neural Networks

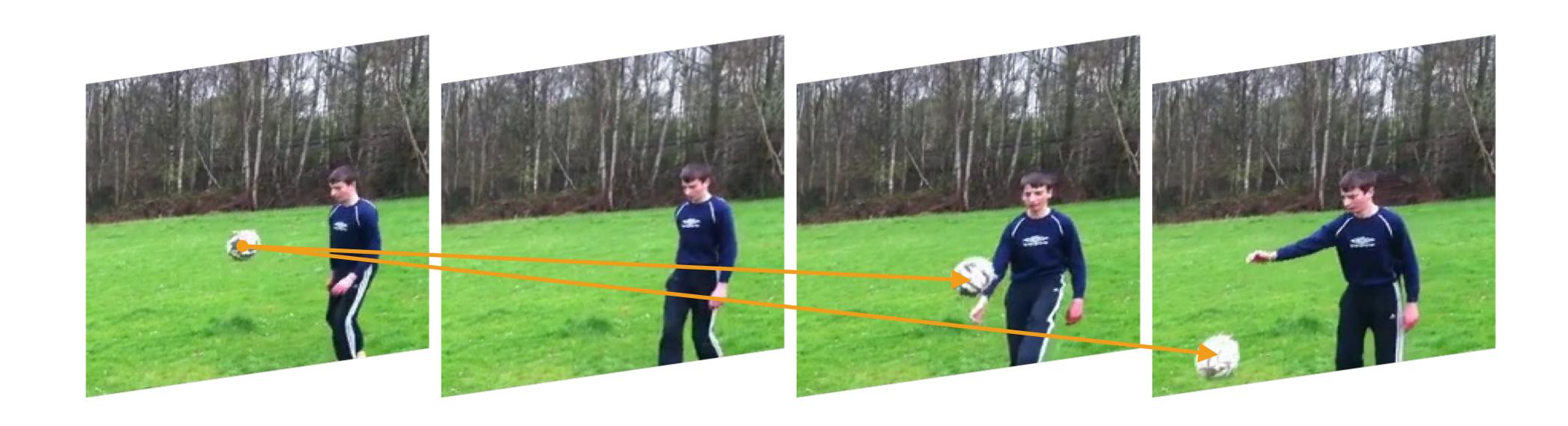
Non-local Neural Network for Videos

Video Recognition

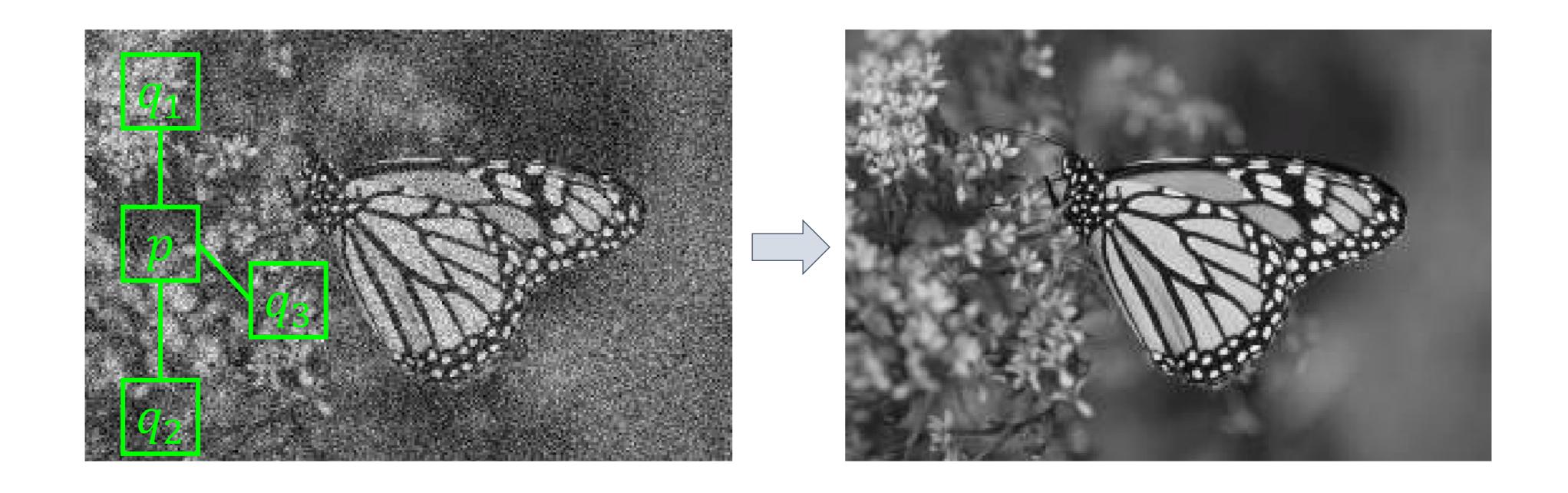


Reasoning for Action Recognition

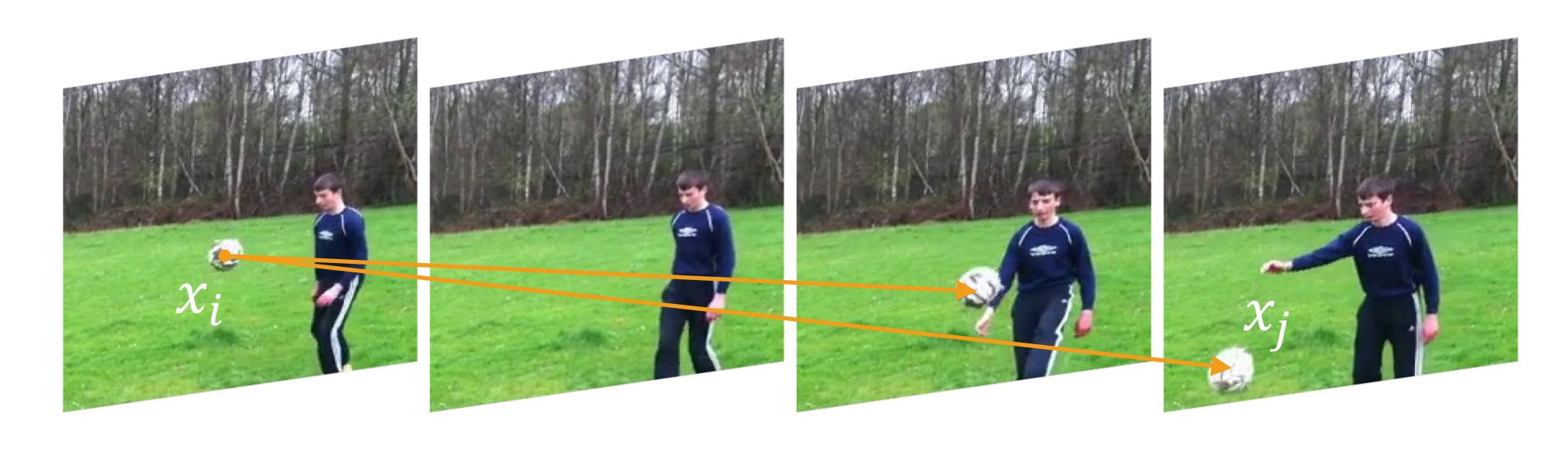
Long-rang explicit reasoning



Non-local Means



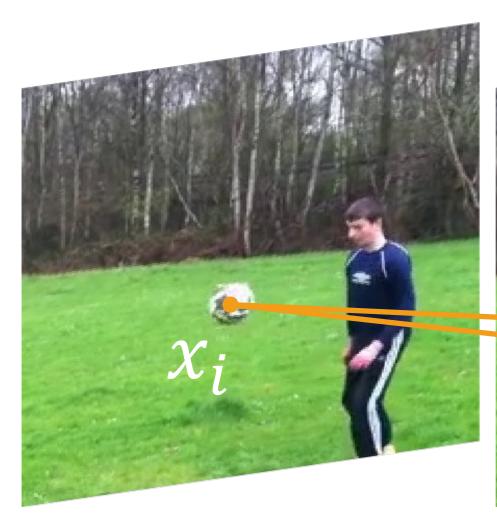
Operation in feature space Can be embedded into any ConvNets

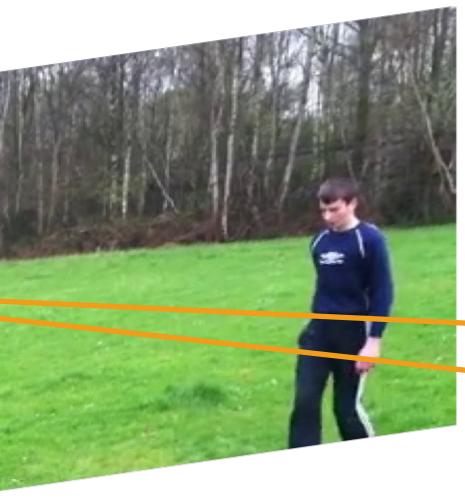


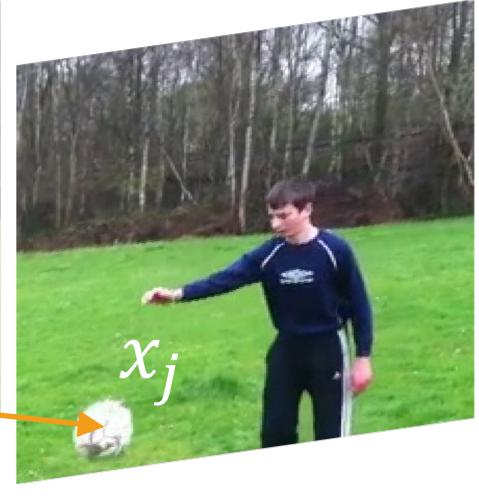
$$y_i = \frac{1}{C(x)} \sum_{\forall j} f(x_i, x_j) g(x_j)$$

Affinity

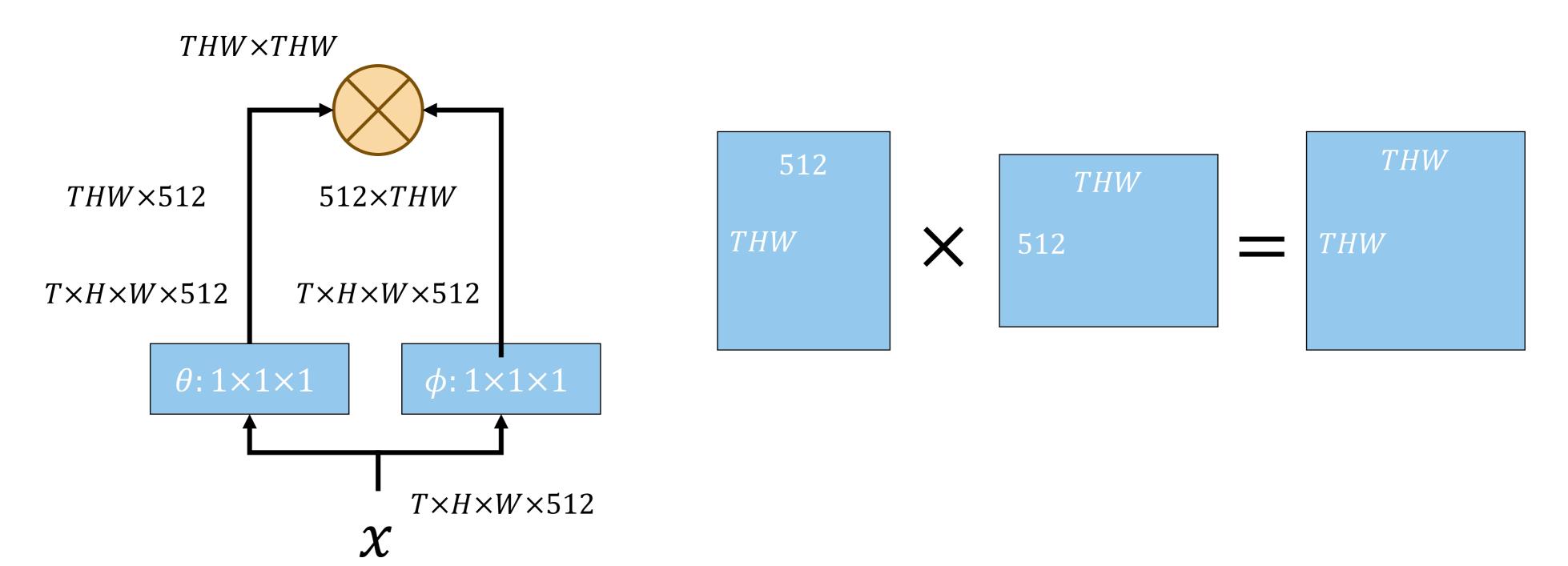
Features



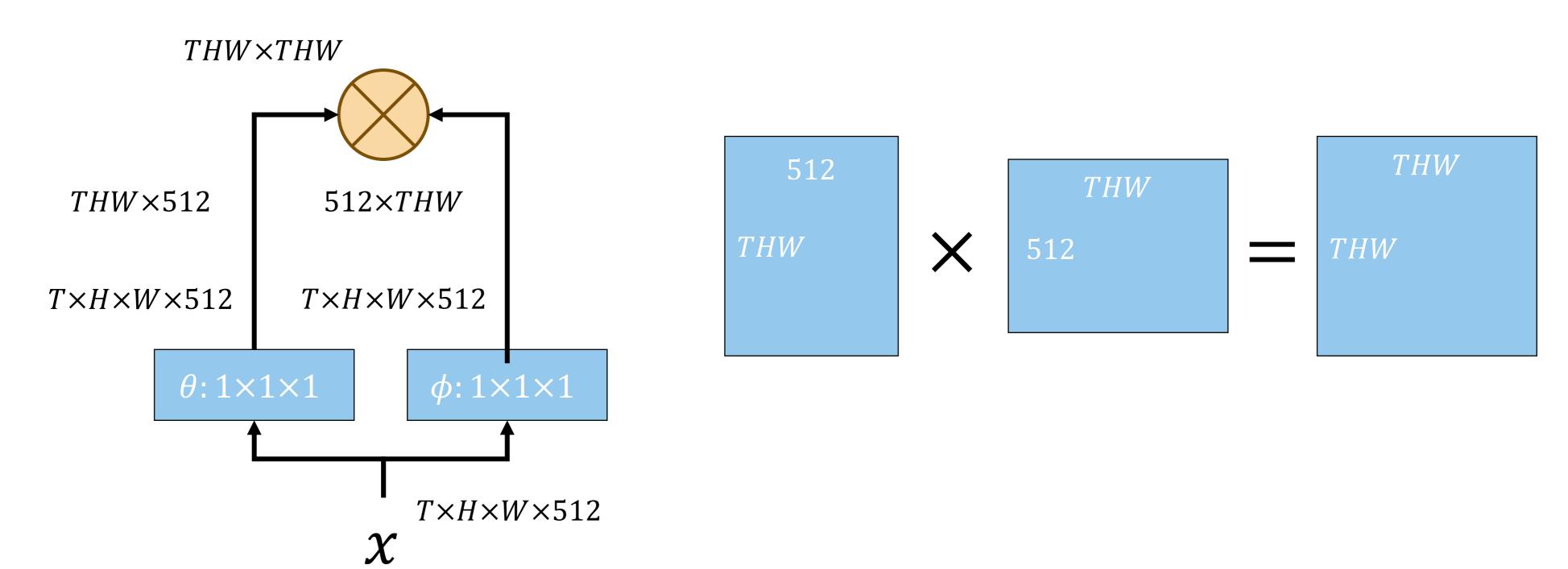




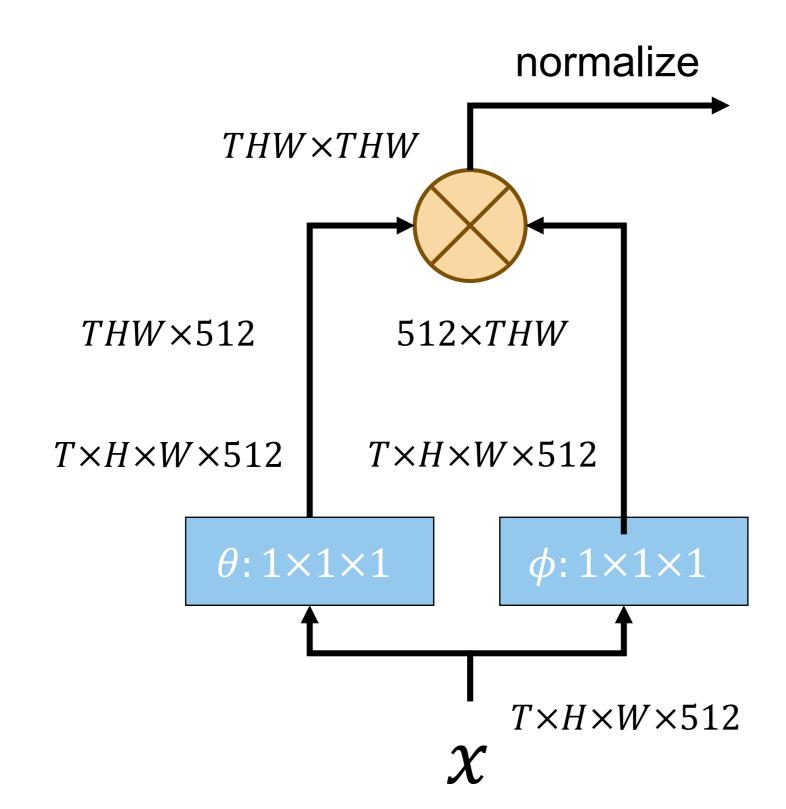
$$y_i = \frac{1}{C(x)} \sum_{\forall j} f(x_i, x_j) g(x_j)$$



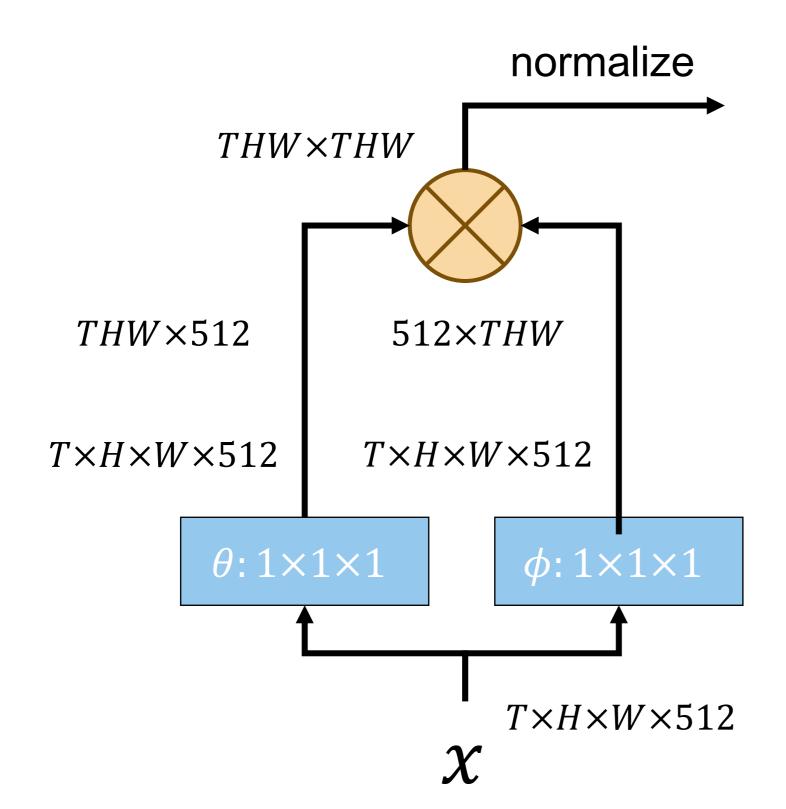
$$y_i = \frac{1}{C(x)} \sum_{\forall j} f(x_i, x_j) g(x_j)$$



$$y_i = \frac{1}{C(x)} \sum_{\forall j} f(x_i, x_j) g(x_j)$$



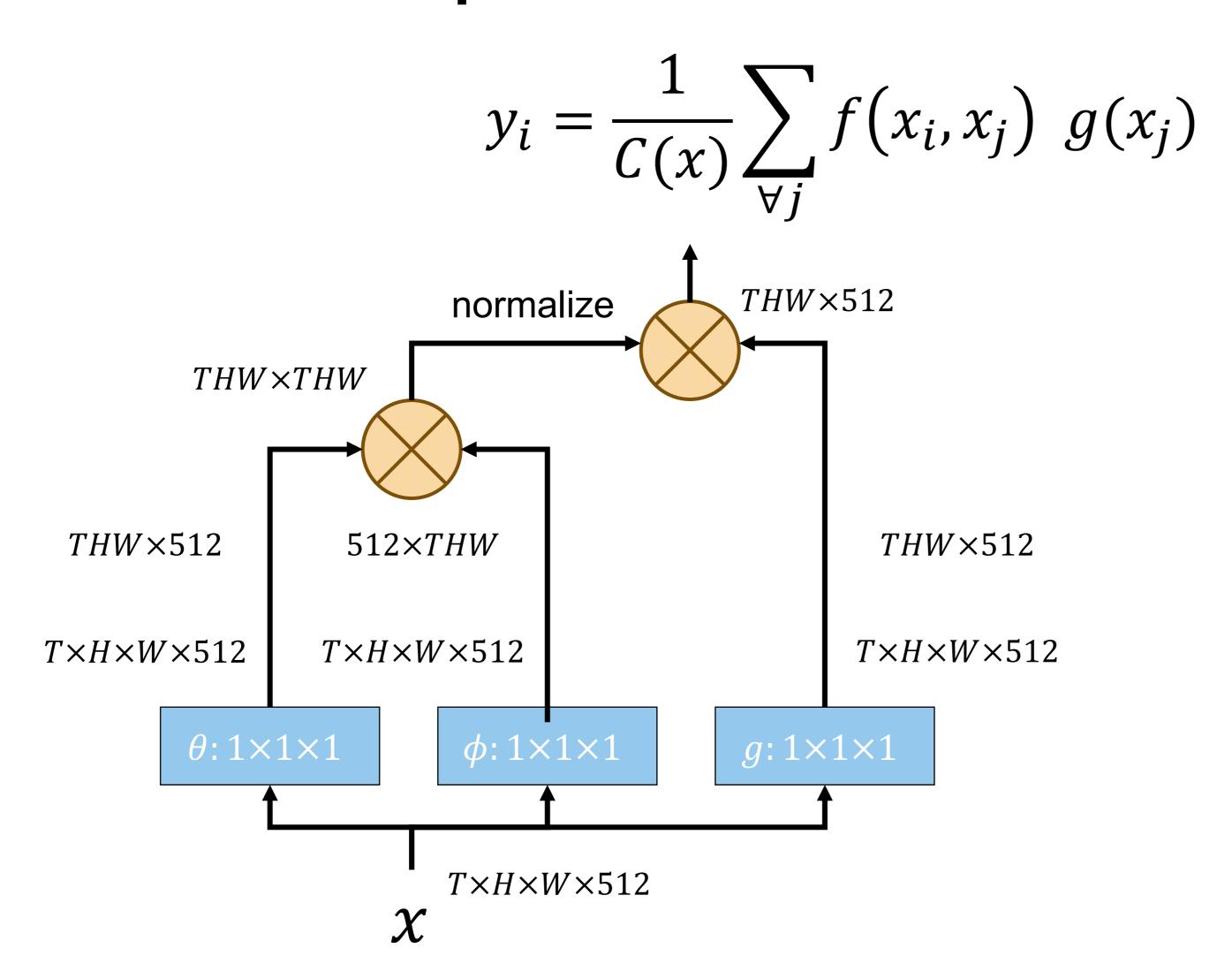
$$y_i = \frac{1}{C(x)} \sum_{\forall j} f(x_i, x_j) g(x_j)$$

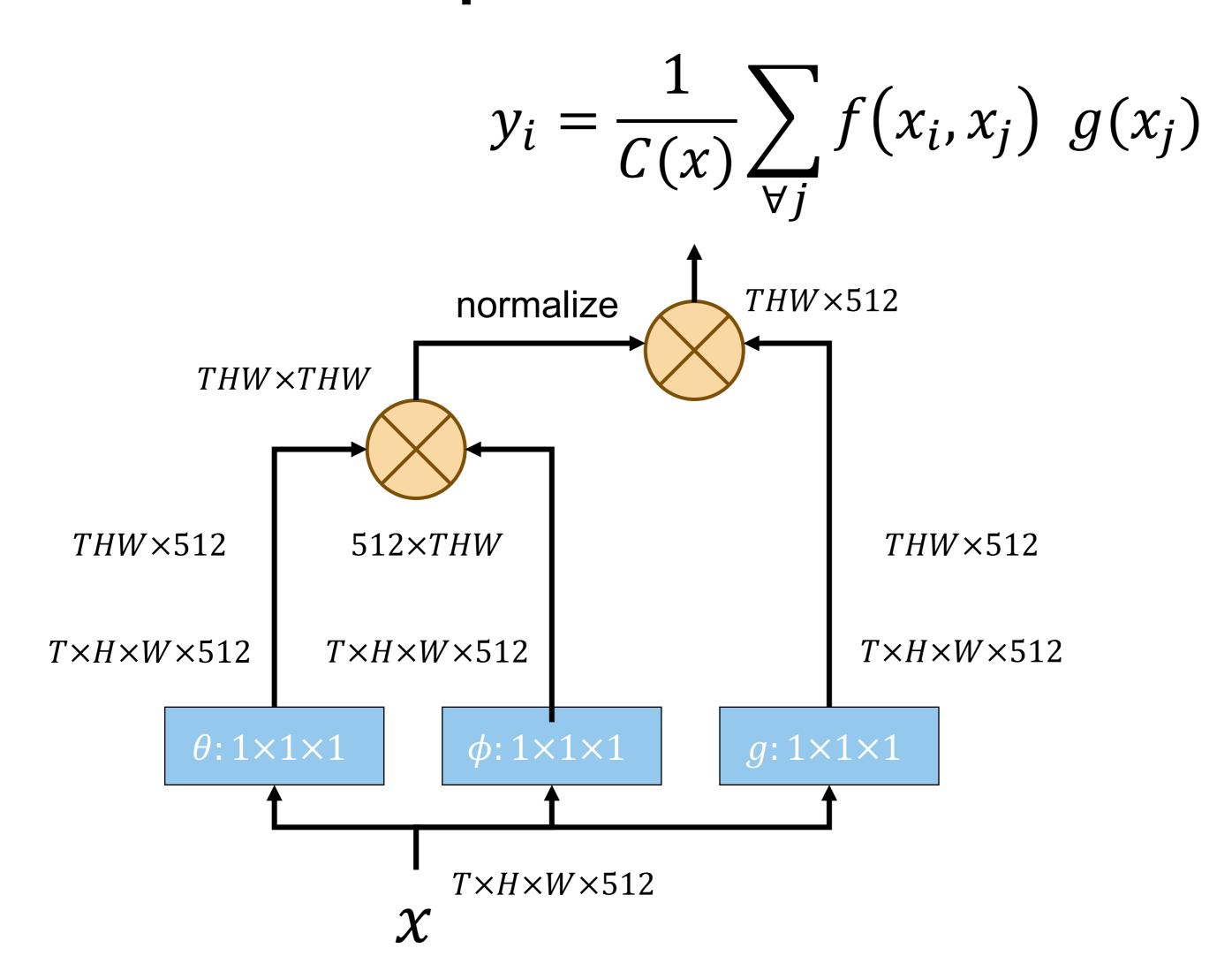


$$f(x_i, x_j) = \exp(x_i^T x_j)$$

$$C(x) = \sum_{\forall j} f(x_i, x_j)$$

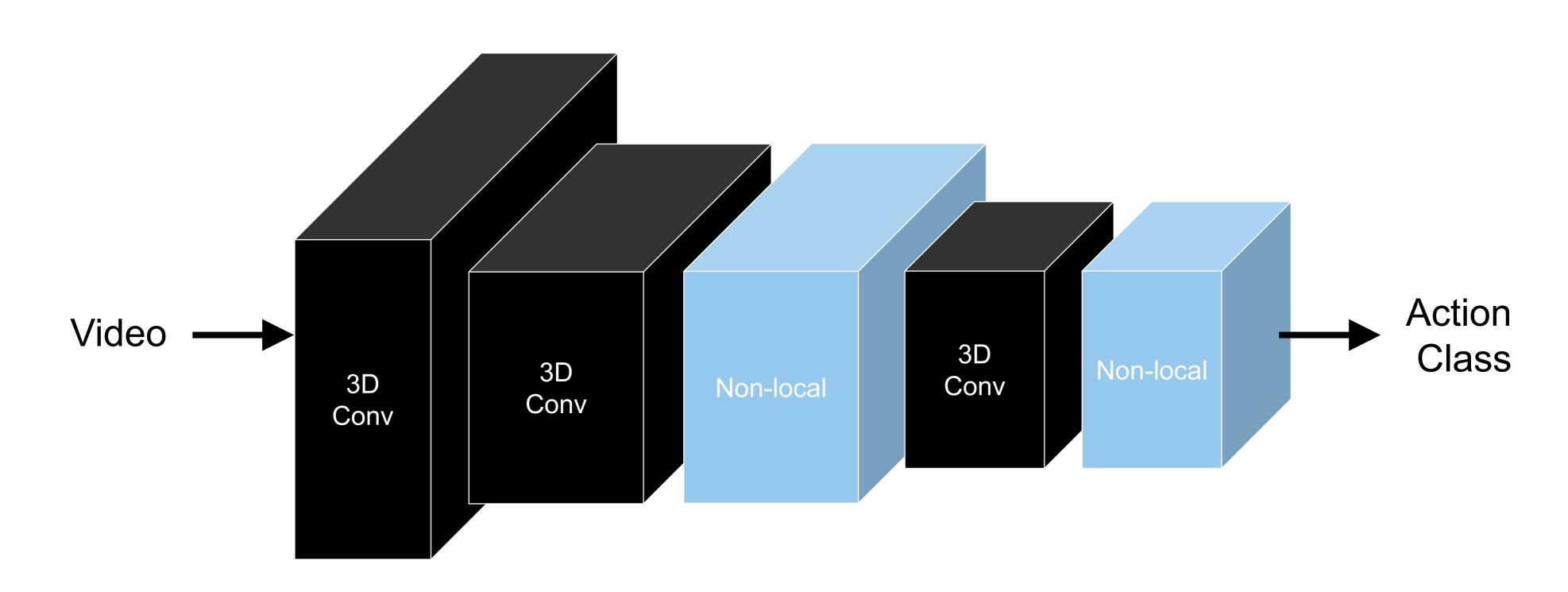
$$\frac{f(x_i, x_j)}{C(x)} = \frac{\exp(x_i^T x_j)}{\sum_{\forall j} \exp(x_i^T x_j)}$$



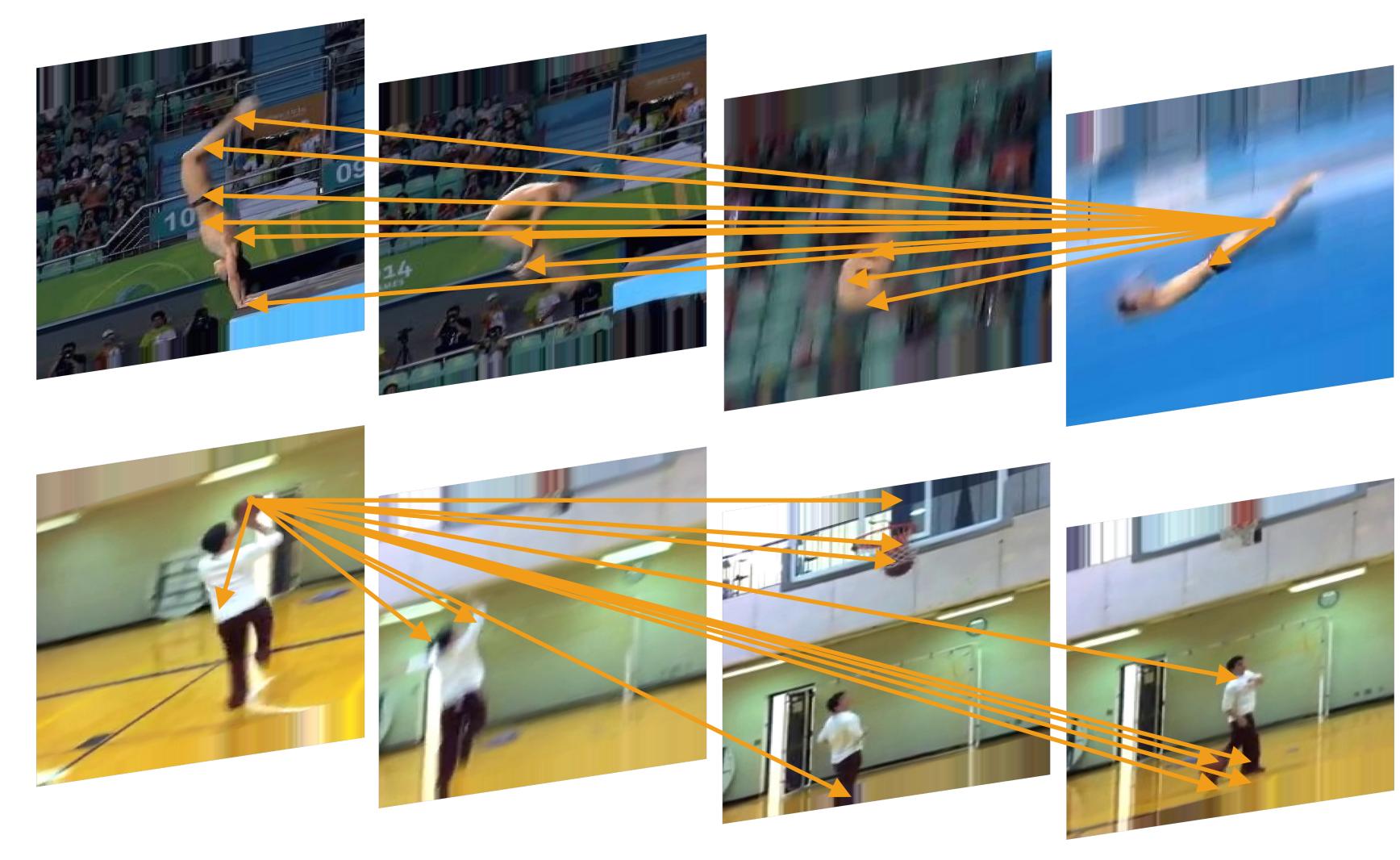


Non-local Operator as A Residual Block

$$z_i = y_i W + x_i$$

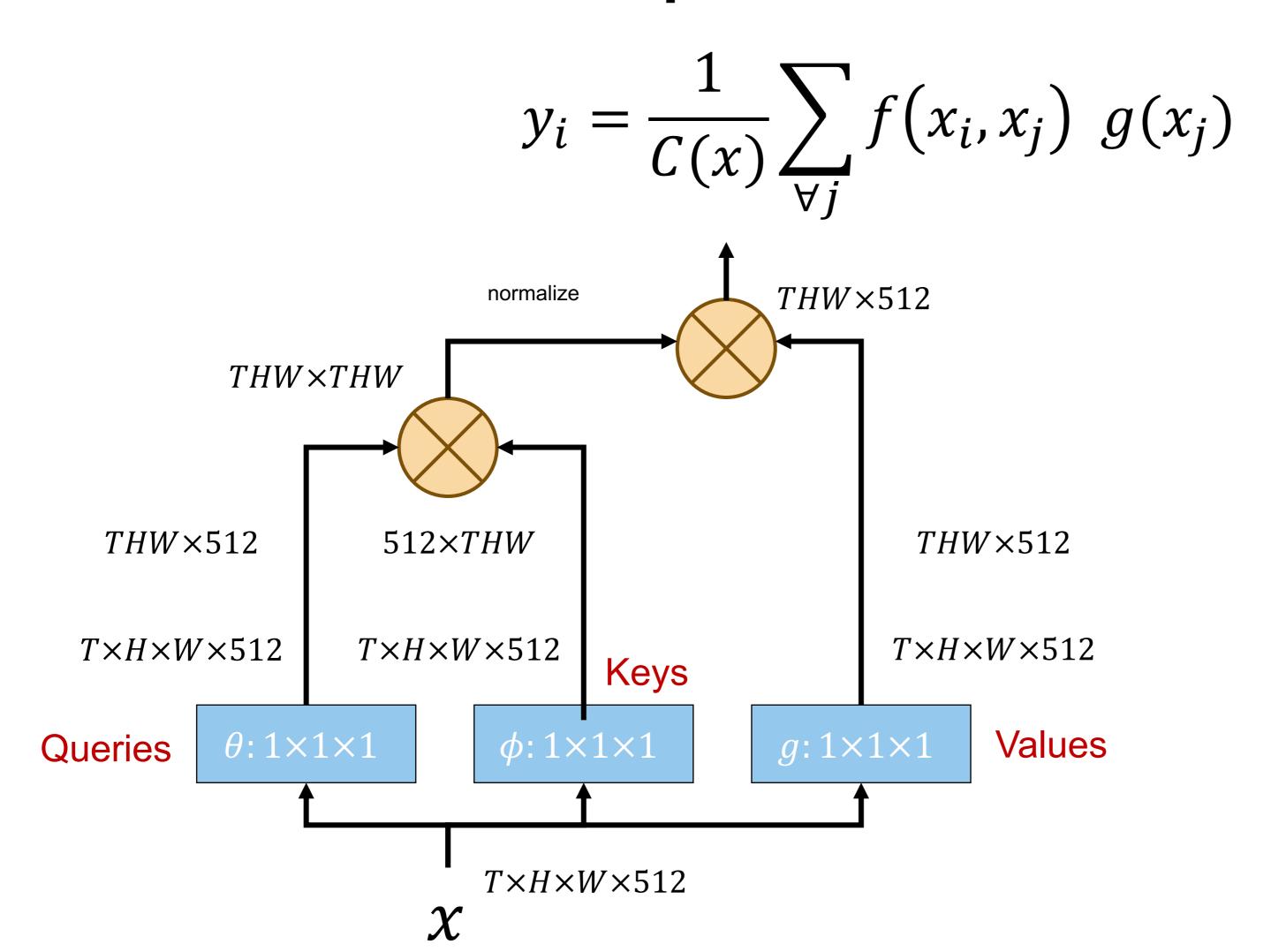


Examples

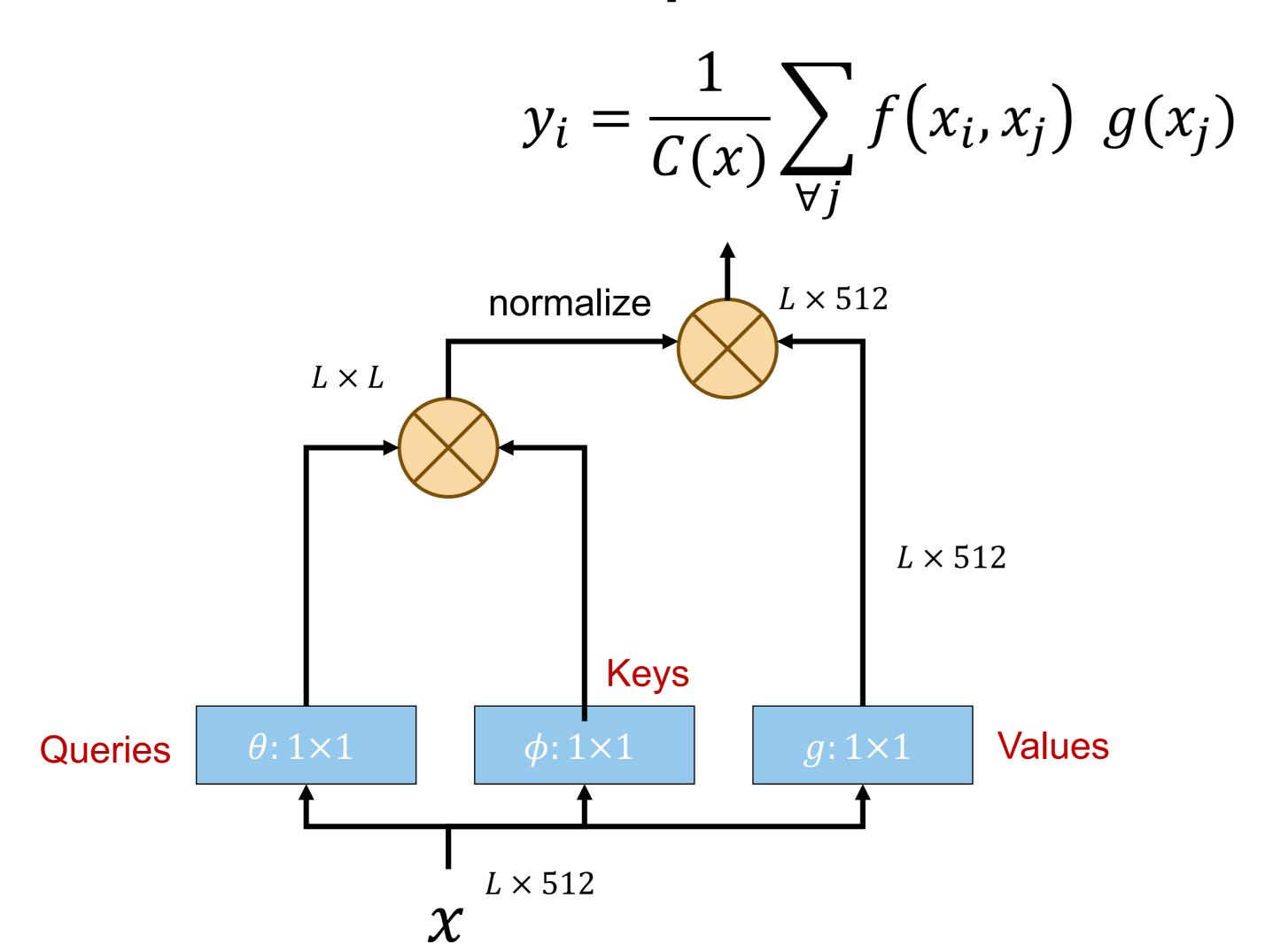


Self-Attention and Transformer for NLP

Self-Attention Operator



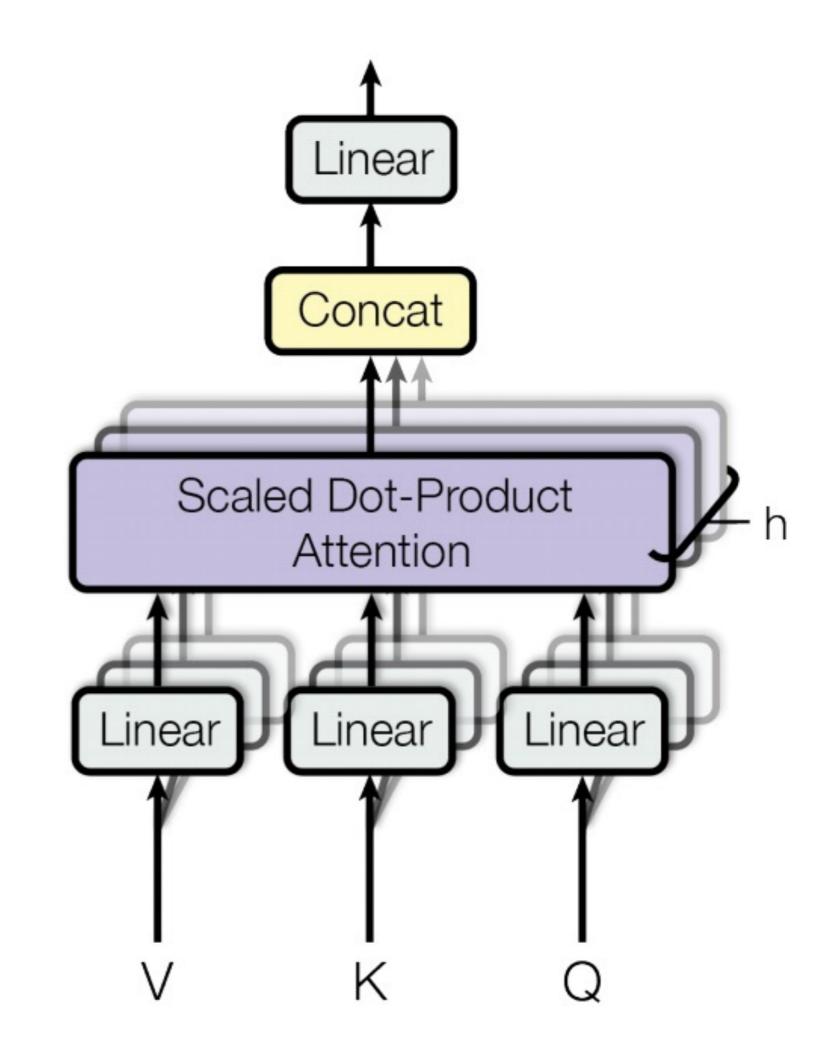
Self-Attention Operator



governments registration American majority process passed <EOS> making difficult <pad> <pad> <pad> <pad> <pad> <pad> voting since more have 2009 spirit laws new that this the ō र् ₽. difficult making 2009 more voting spirit majority laws since the <pad> <pad> that <pad> have new <pad> <pad> .⊑ this ₹ <EOS> <pad> <u>.s</u> registration ō process American governments passed

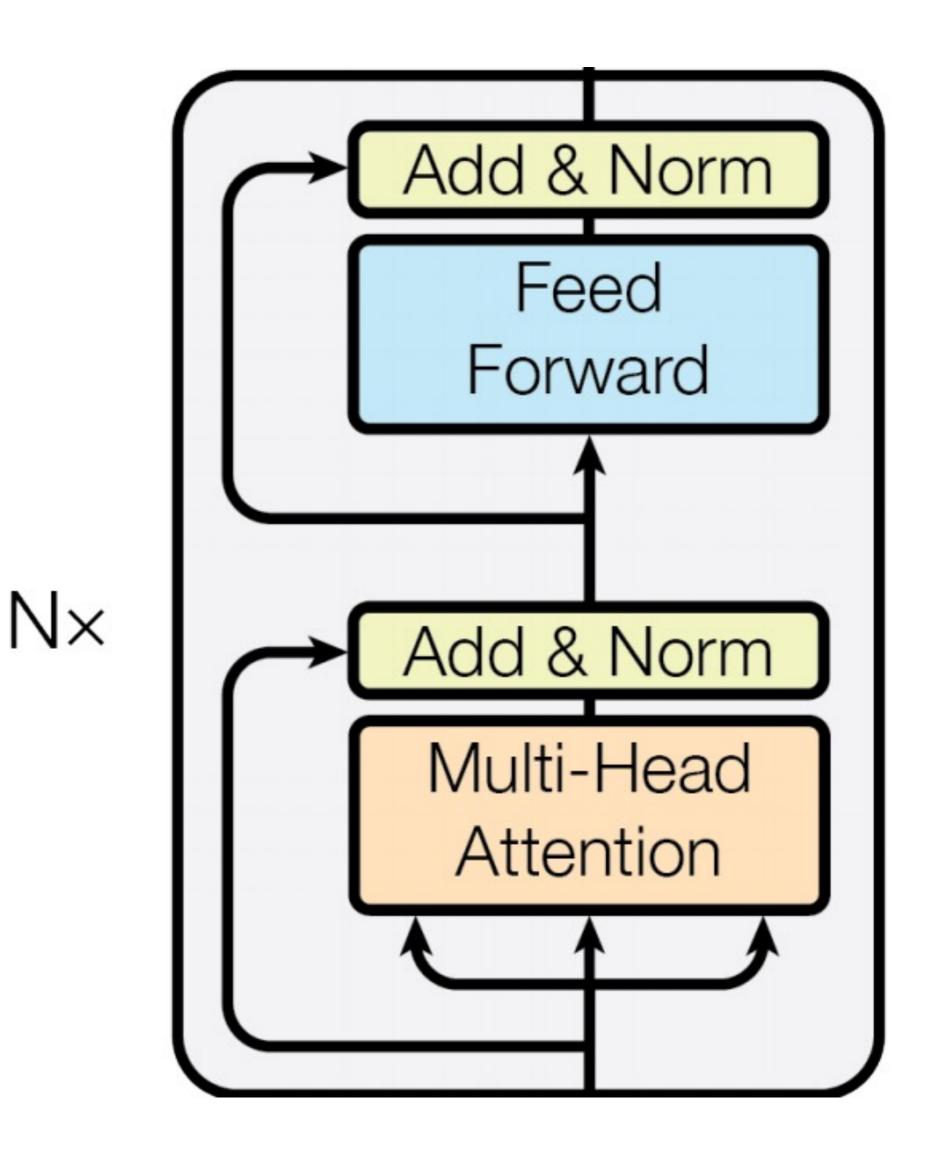
Multi-head attention

- Run h attention models in parallel on top of different linearly projected versions of Q, K, V; concatenate and linearly project the results
- Intuition: enables model to attend to different kinds of information at different positions



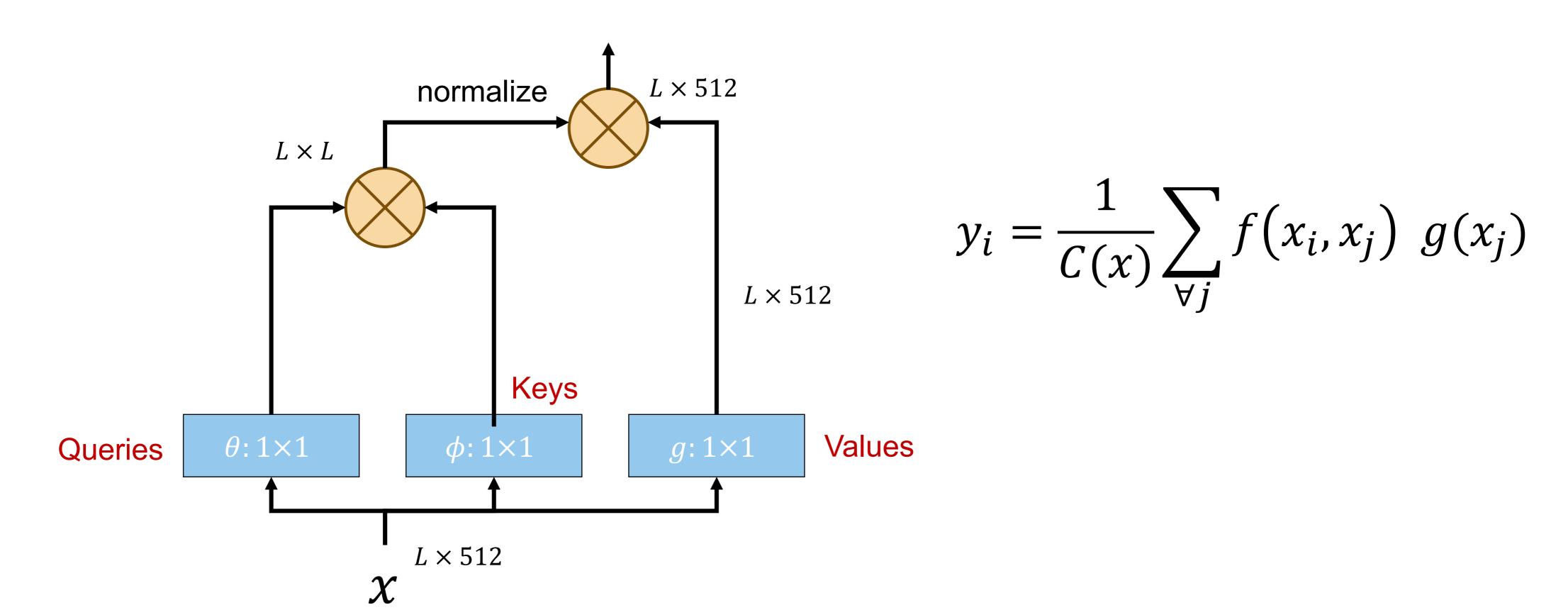
Transformer blocks

- A Transformer is a sequence of transformer blocks
 - Vaswani et al.: N=12 blocks, embedding dimension = 512, 6 attention heads
 - Add & Norm: residual connection followed by <u>layer</u> normalization
 - Feedforward: two linear layers with ReLUs in between, applied independently to each vector
- Attention is the only interaction between inputs!



Positional encoding

Self-attention does not encode the order of the inputs.



Positional encoding

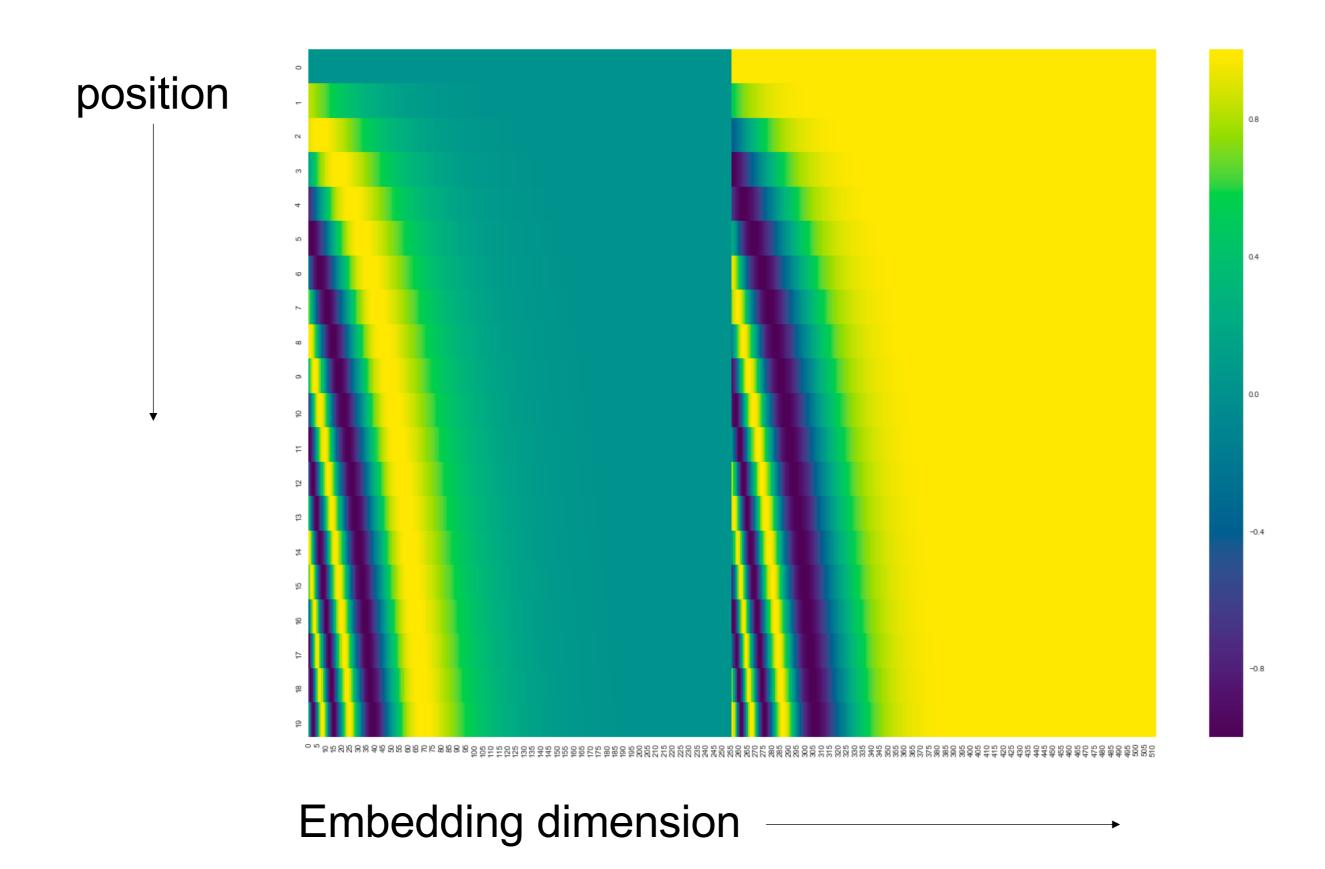
To give transformer information about ordering of tokens, add function of position (based on sines and cosines) to every input

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

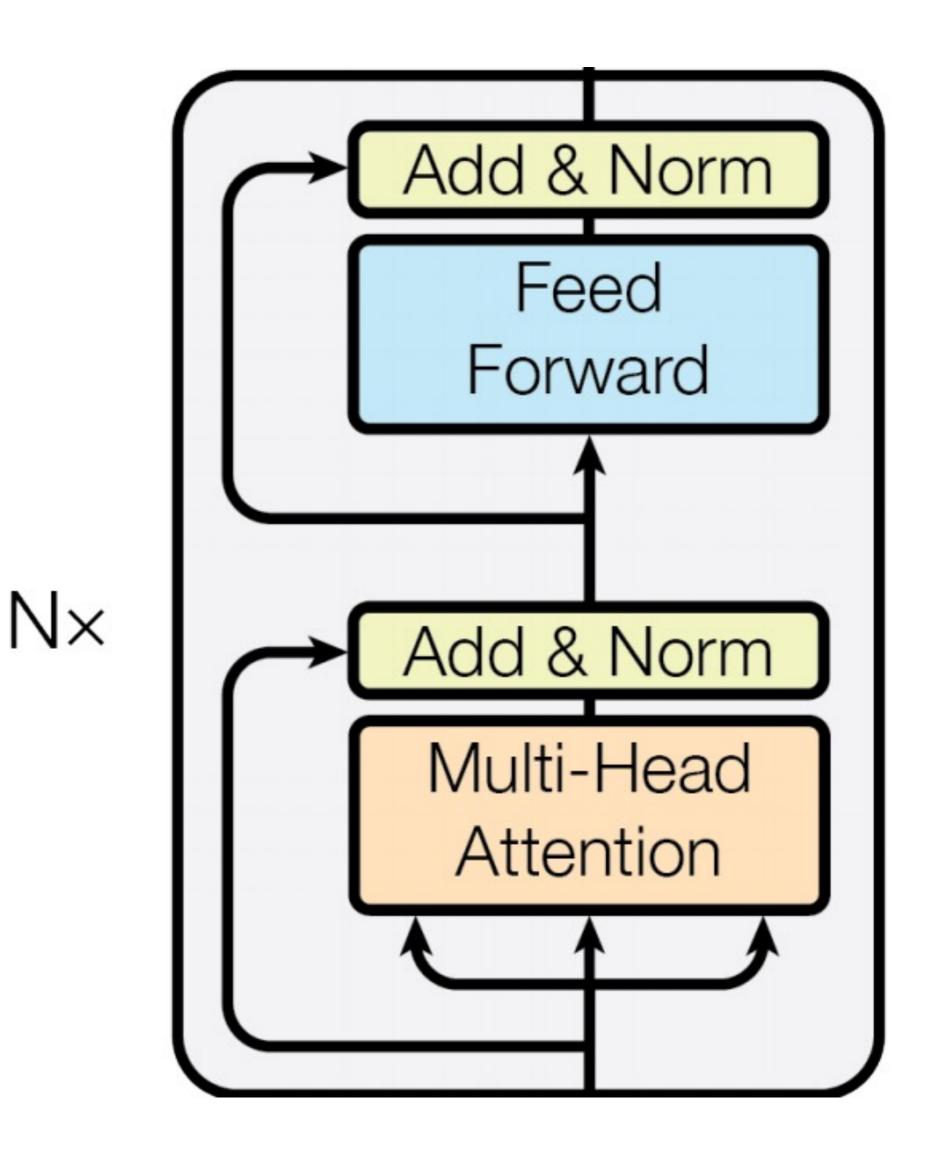
Positional encoding

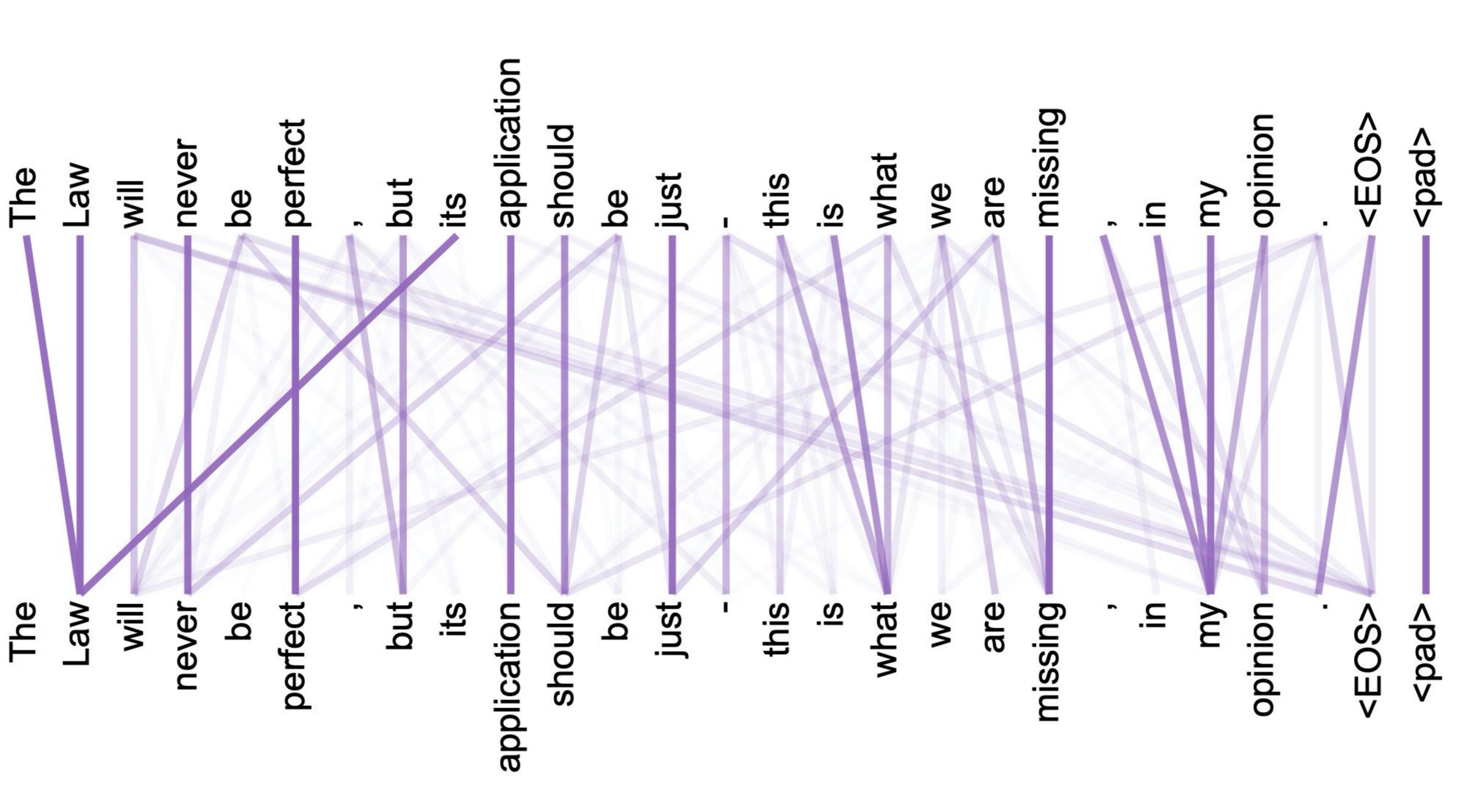
To give transformer information about ordering of tokens, add function of position (based on sines and cosines) to every input



Transformer blocks

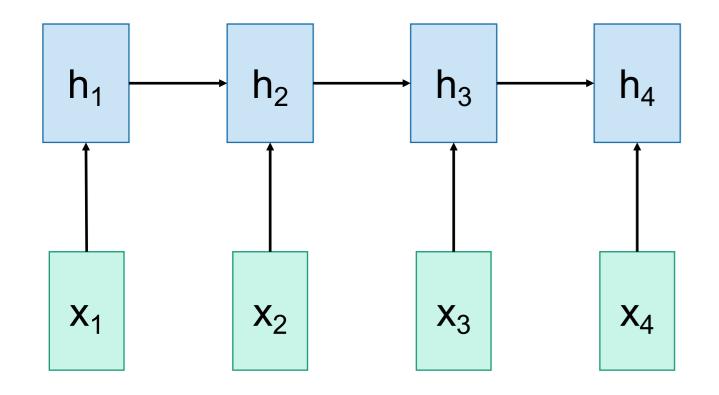
- A Transformer is a sequence of transformer blocks
 - Vaswani et al.: N=12 blocks, embedding dimension = 512, 6 attention heads
 - Add & Norm: residual connection followed by <u>layer normalization</u>
 - Feedforward: two linear layers with ReLUs in between, applied independently to each vector
- Attention is the only interaction between inputs!



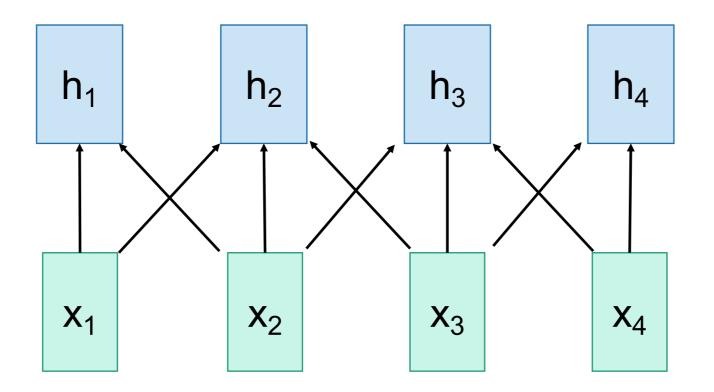


Different ways of processing sequences

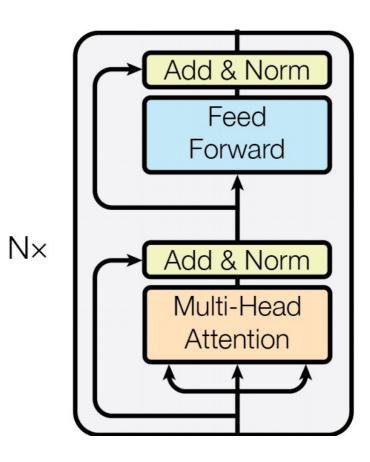
RNN



1D convolutional network



Transformer



Works on ordered sequences

- Pros: Good at long sequences: the last hidden vector encapsulates the whole sequence
- Cons: Not parallelizable: need to compute hidden states sequentially

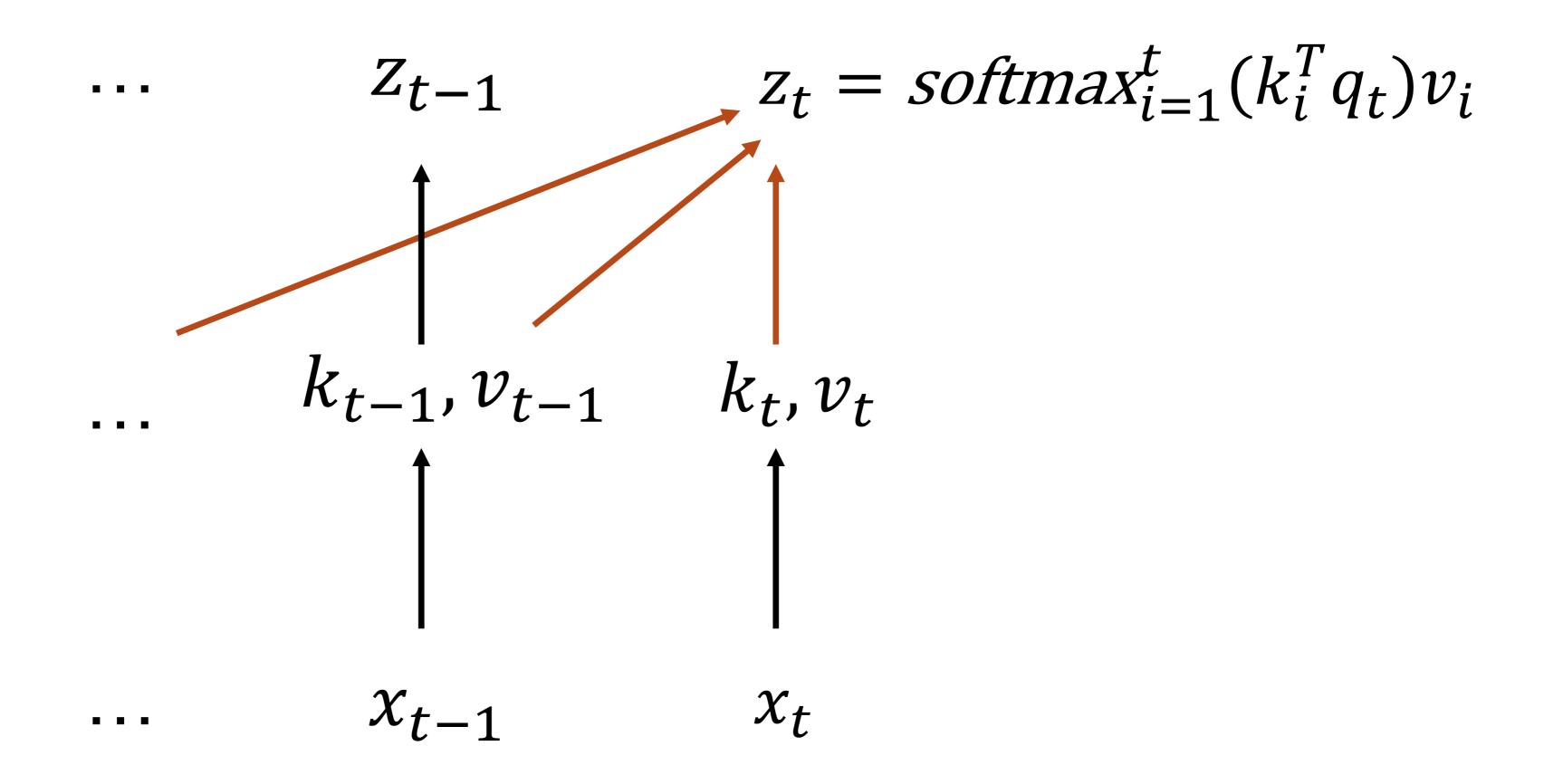
Works on multidimensional grids

- Con: Bad at long sequences:
 Need to stack many conv layers
 for outputs to "see" the whole
 sequence
- Pro: Highly parallel: Each output can be computed in parallel

- Works on sets of vectors
- Pro: Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- Pro: Highly parallel: Each output can be computed in parallel
- Con: Very memory-intensive

RNN

Transformer

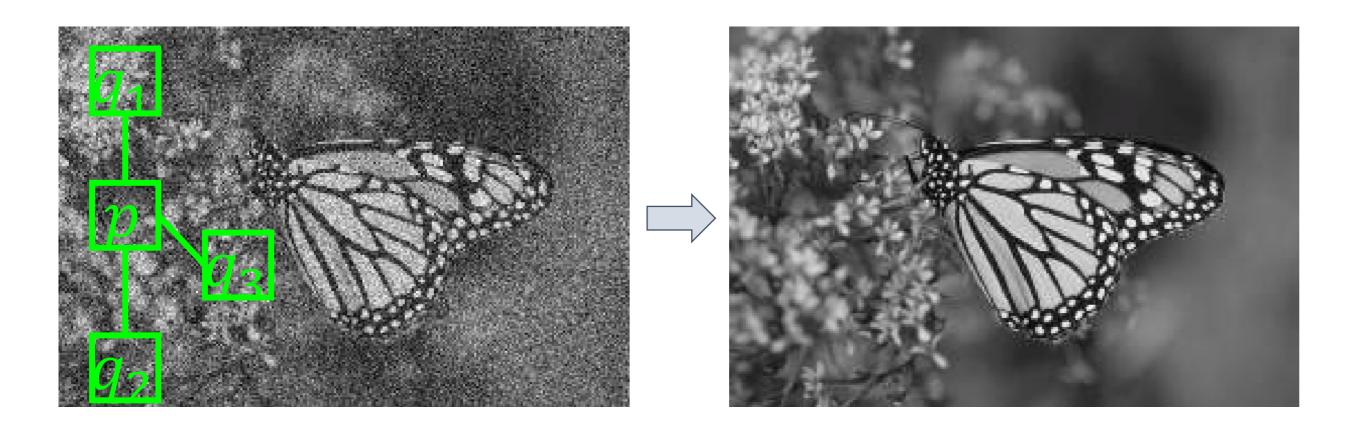


Transformer

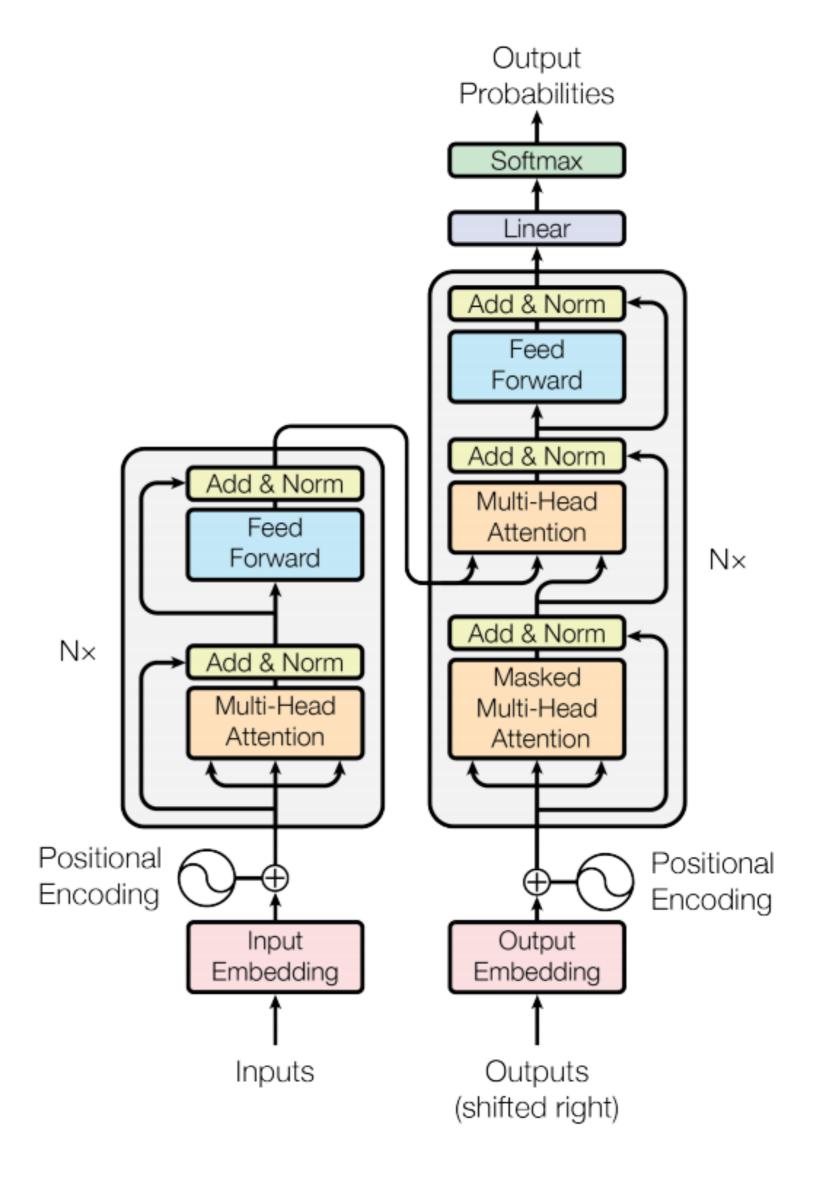
$$Z_{t-1} \qquad Z_t = softmax_{i=1}^t (k_i^T q_t) v_i$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

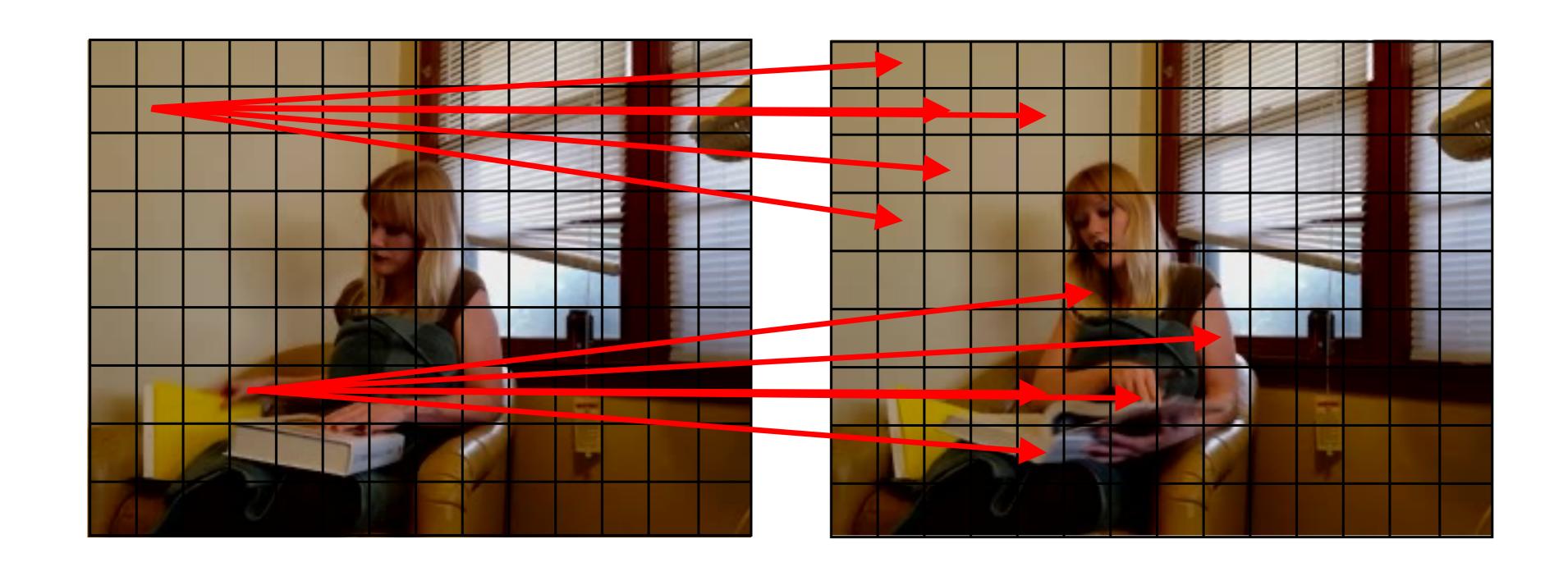
It is all Non-local Means



Buades et al., 2005.

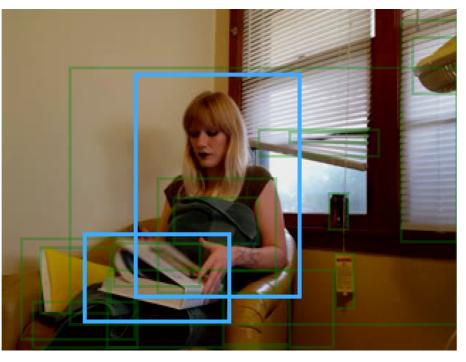


Graph Neural Networks and its connection to Self-Attention

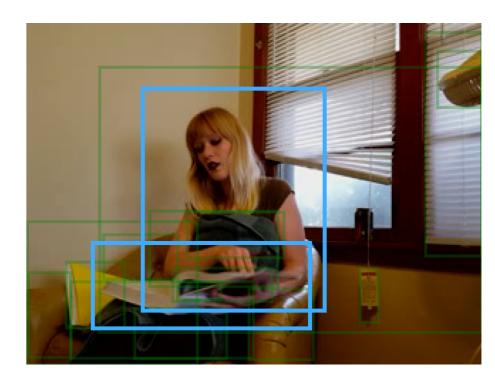


The Non-local / Self-Attention Block



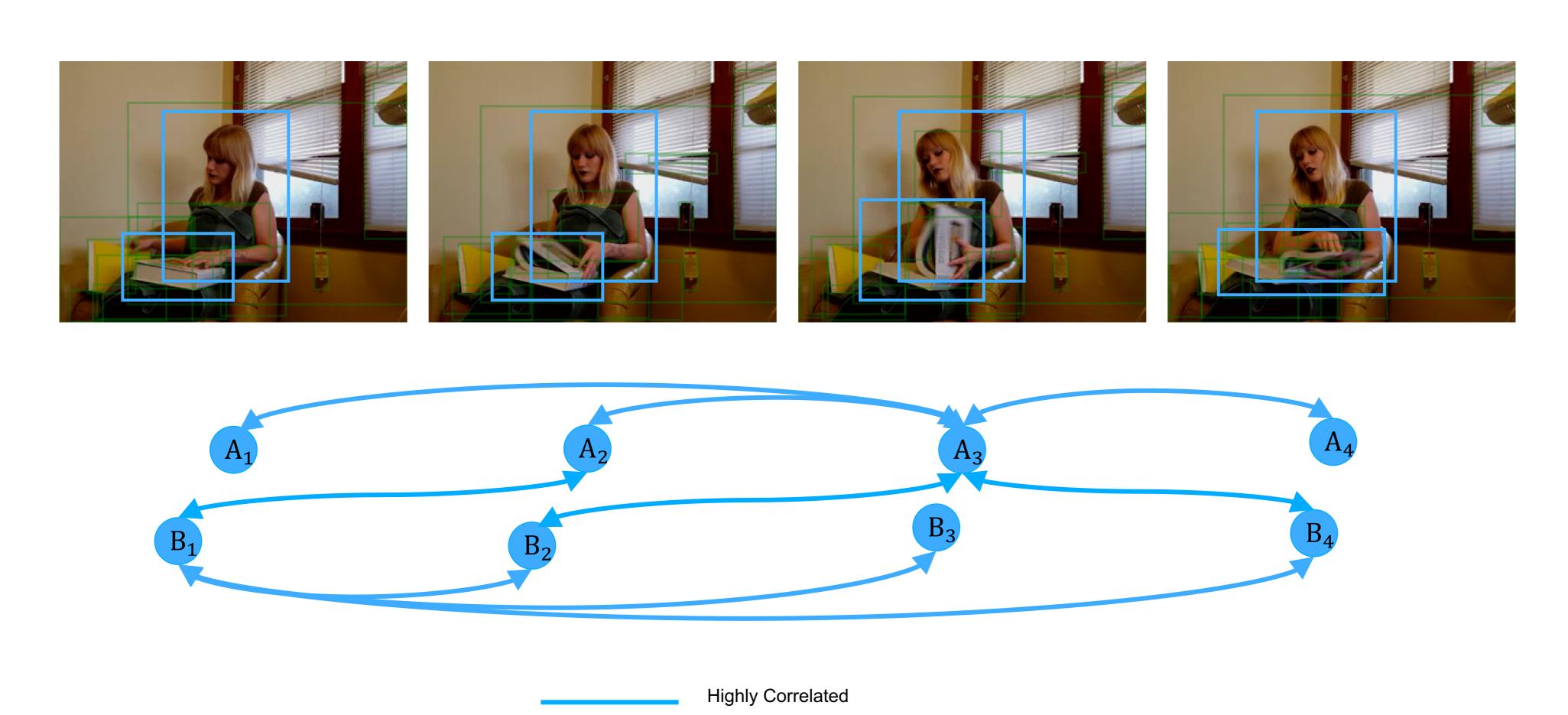




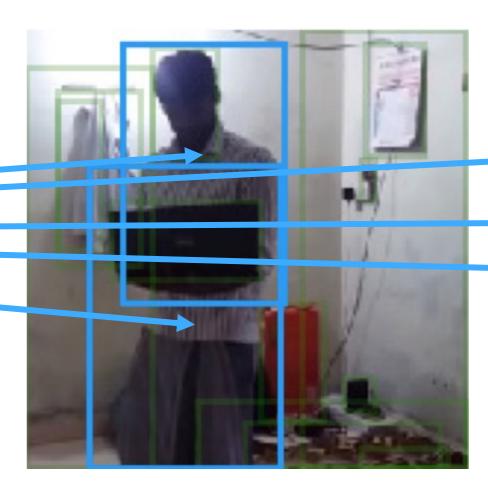


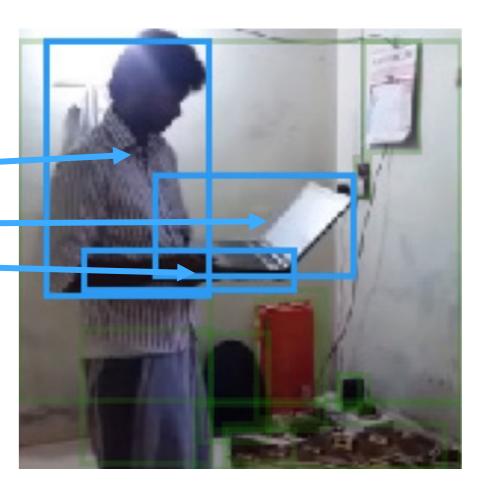
Object states changes over time

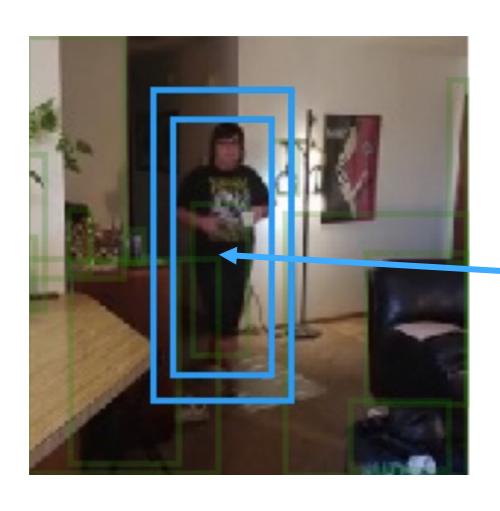
Human-object, object-object interactions

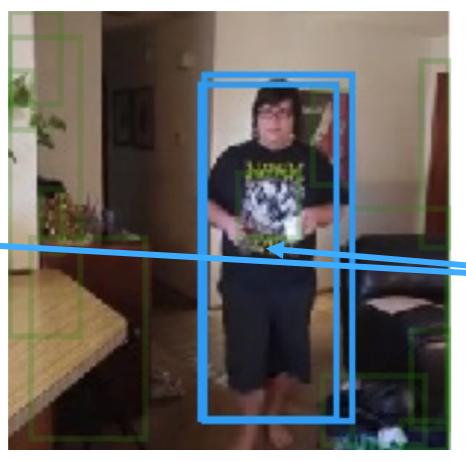


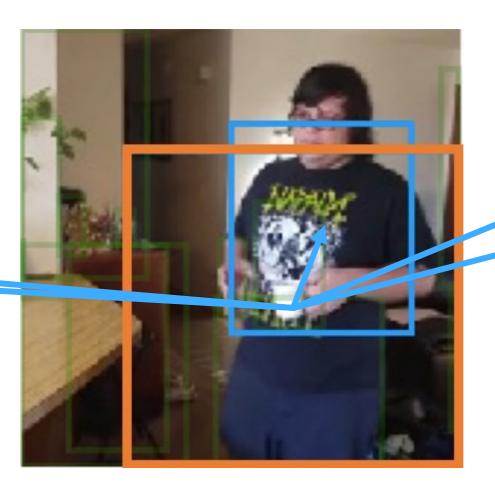
Relations between Regions

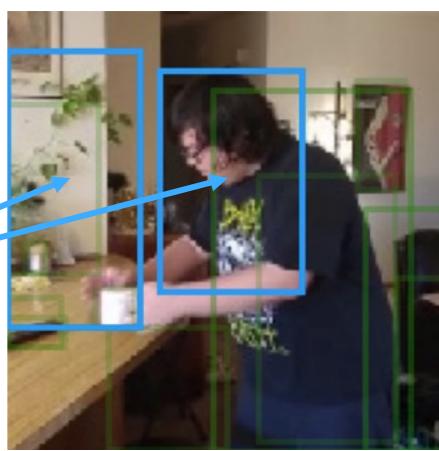












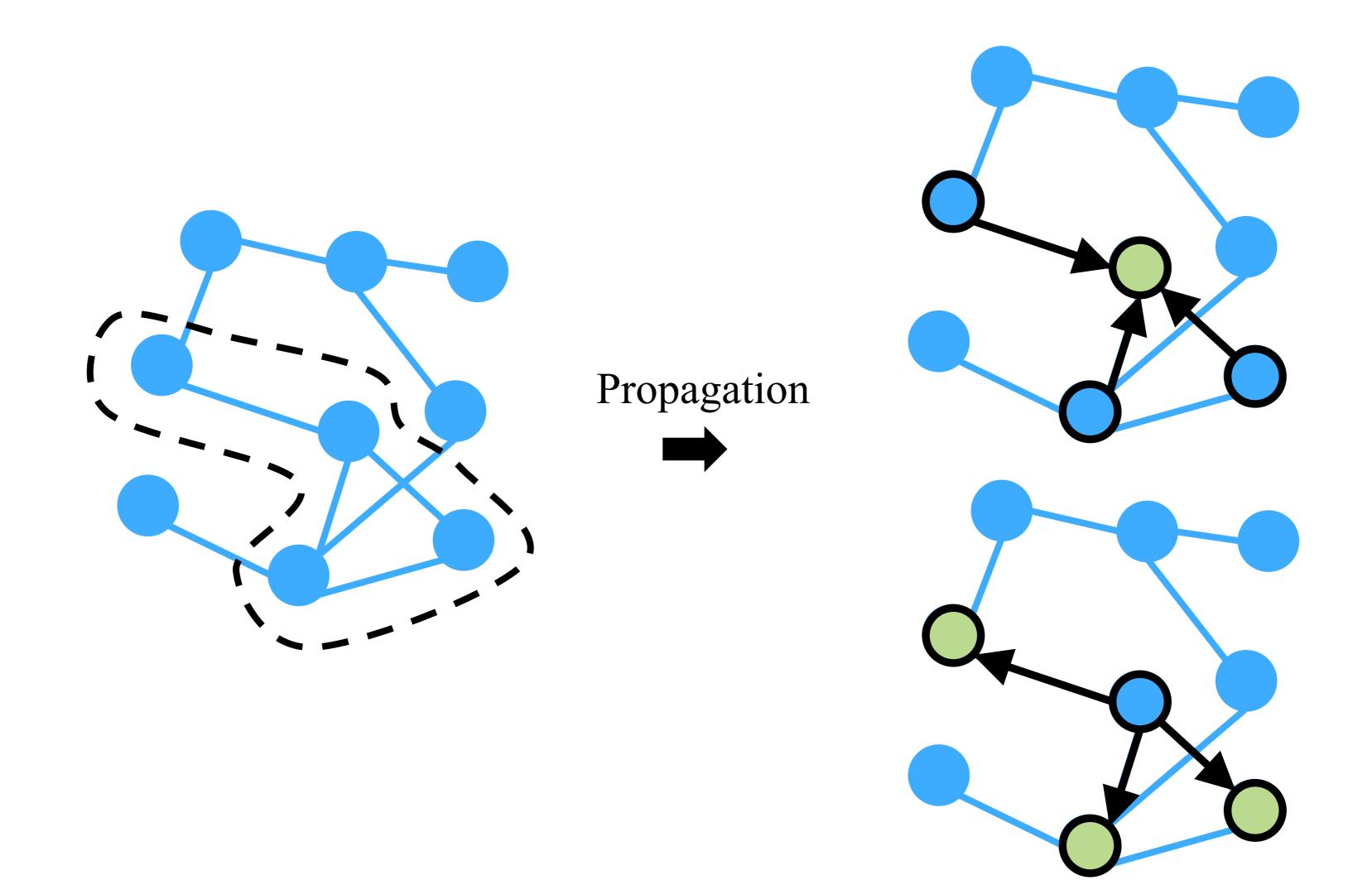
Relations between Regions

$$f(x_i, x_j) = \phi(x_i)^T \phi'(x_j)$$

$$G_{ij} = \frac{\exp f(x_i, x_j)}{\sum_{\forall j} \exp f(x_i, x_j)}$$

Graph Convolutional Network

Graph Convolutional Network



Connecting Non-local Means and GCN

The Non-local Operator:

$$y_{i} = \frac{1}{C(x)} \sum_{\forall j} f(x_{i}, x_{j}) g(x_{j})$$

$$z_{i} = y_{i}W + x_{i}$$

$$= \sum_{\forall j} \frac{f(x_{i}, x_{j})}{\sum_{\forall j} f(x_{i}, x_{j})} g(x_{j})$$

$$= \sum_{\forall j} G_{ij} g(x_{j}) W + x_{i}$$

$$Z = G g(X) W + X$$

The Graph Convolution