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This Class

• Multi-task Learning

• Domain Adaptation

• Semi-supervised Learning



Multi-task Learning



Multi-task with Multiple Networks

https://ruder.io/multi-task/



Multi-task with One Network

https://ruder.io/multi-task/



We have already seen in detection
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𝑓𝐼 = FPN(𝐼)

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

RoIAlign

An additional head is added to predict

instance-level segmentation masks

RPN(

𝑓𝐼)

FCN Masks

Cascaded heads (inference only)

He et al. Mask R-CNN. ICCV 2017.



We have already seen in detection
He et al. Mask R-CNN. ICCV 2017.



Multi-task Learning

Misra et al. Cross-stitch Networks for Multi-task Learning. 2016.



Multi-task Learning



Multi-task Learning



How to share?



How to share?



Another Task



How to share?



What do people usually do?

• Given a new set of tasks:

• Enumerate many ConvNet architectures

• Train all of them

• Pick the best architecture



Cross-stitch Networks



Cross-stitch Networks



Cross-stitch Networks



Cross-stitch Networks



Cross-stitch Networks



Cross-stitch Networks





Progressive Networks

Rusu et al. Progressive Neural Networks. 2016.



Progressive Networks



Continual Learning

• We want to re-use the past experience as much as possible

• But we do not want to forget about the old tasks, i.e., 
catastrophic forgetting 



Continual Learning



Continual Learning

When train a new task, we need 

to train the task head and shared 

network together.

Changing shared features might 

lead to catastrophic forgetting 



Continual Learning

Disentanglement: 

Shared network should capture 

the commons across tasks

Individual heads model task-

specifics



Continual Learning

Adversarial Learning: 

Input different task and images to 

shared backbone, the output 

features should be in the same 

distribution.

Use D to force it.



Domain Adaptation



Domain Adaptation: Train on Source 
adapt to Target

Credits: https://people.eecs.berkeley.edu/~jhoffman/talks/taskcv-iccv15.pdf



Train on Source adapt to Target



Train on Source adapt to Target

𝜃𝐷 

domain 

classifier



Adversarial Training: 
Learn Representations Confuse 𝜃𝐷 

𝜃𝑐 
object

classifier



Adversarial Training: 
Learn Representations Confuse 𝜃𝐷 



Adversarial Training: 
Learn Representations Confuse 𝜃𝐷 



Adversarial Training: 
Learn Representations Confuse 𝜃𝐷 



CycleGAN for Domain Adaptation

Hoffman et al. CyCADA: Cycle-Consistent Adversarial Domain Adaptation. 2018



CycleGAN



Self-Supervised Learning for UDA

Sun et al. 2019



Self-Supervised Learning for UDA

Sun et al. 2019



Self-Supervised Learning for UDA

Sun et al. 2019



Self-Supervised Learning for UDA



Self-Supervised Learning for UDA



Self-Supervised Learning for UDA



Semi-Supervised Learning



Chen et al. 2013



Data Distillation: Towards Omni-
Supervised Learning

Radosavovic et al. 2017



Data Distillation: Towards Omni-
Supervised Learning



This Class

• Multi-task Learning

• Domain Adaptation

• Semi-supervised Learning
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