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Multi-task Learning



Multi-task with Multiple Networks
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Multi-task with One Network
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He et al. Mask R-CNN. ICCV 2017.

We have already seen in detection
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An additional head is added to predict
instance-level segmentation masks




He et al. Mask R-CNN. ICCV 2017.

We have already seen in detection

AP lp)lezrson APIp;lezﬁvlc(m AP i
Faster R-CNN 32.5 - -
Mask R-CNN, mask-only 53.6 45.8 -
Mask R-CNN, keypoint-only 50.7 - 64.2
Mask R-CNN, keypoint & mask 52.0 45.1 64.7

Table 5. Multi-task learning of box, mask, and keypoint about the person
category, evaluated on minival. All entries are trained on the same data
for fair comparisons. The backbone is ResNet-50-FPN. The entry with
64.2 AP on minival has 62.7 AP on test-dev. The entry with 64.7
APonminival has 63.1 AP on test—-dev (see Table 4).



Multi-task Learning
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Misra et al. Cross-stitch Networks for Multi-task Learning. 2016.



Multi-task Learning

Bl chared Layers

Complete sharing of parameters between tasks Bl TaskAlayers
B Task B layers




Multi-task Learning




How to share?
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How to share?
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Another Task

Has saddle = Four legs Object location



How to share?
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What do people usually do?

 Given a new set of tasks:

« Enumerate many ConvNet architectures
* Train all of them

* Pick the best architecture



Cross-stitch Networks

conv1, pool] conv2, pool?2 conv3d conv4 conv5, pool5




Cross-stitch Networks

conv1, pool1 conv2, pool2 conv3d conv4 convs, pool5




Cross-stitch Networks

conv1, pooll conv2, pool2 conv3d conv4 conv5, pool5 fco




Cross-stitch Networks

Learns a linear
combination




Cross-stitch Networks

No sharing
across tasks




Cross-stitch Networks

High sharing
across tasks




Surface Normals Segmentation

(Median Error) Lower is better (mean IU) Higher is better

Best split architecture
(Brute-force search)

[
Cross-stitch _ 18

.0
8.6
2

Attributes Detection
(mean AP) (mean AP)

One-Task network 60.9 44.9

Best split architecture 59.7 45.0
(Brute-force search) 61.0 14.6

Cross-stitch 63.0 45.2




Progressive Networks

outputy outputs outputs
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Rusu et al. Progressive Neural Networks. 2016.



Progressive Networks
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Continual Learning

* We want to re-use the past experience as much as possible

« But we do not want to forget about the old tasks, i.e.,
catastrophic forgetting



Continual Learning
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Continual Learning
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When train a new task, we need
to train the task head and shared
network together.

Changing shared features might
lead to catastrophic forgetting



Continual Learning
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Continual Learning
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Adversarial Learning:

Input different task and images to
shared backbone, the output
features should be in the same
distribution.

Use D to force it.



Domain Adaptation



Domain Adaptation: Train on Source
adapt to Target
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Source Domain ~ Ps(X,Y)
lots of labeled data

Ds = {(xi,4:),Vi € {1,...,N}}

Credits: https://people.eecs.berkeley.edu/~jhoffman/talks/taskcv-iccv15.pdf



Train on Source adapt to Target
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Train on Source adapt to Target

domain
classifier

object
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Adversarial Training:

Learn Representations Confuse 6,
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Adversarial Training:
Learn Representations Confuse 6,
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Adversarial Training:
Learn Representations Confuse 6,
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Adversarial Training:
Learn Representations Confuse 6,

A->W A—->D DA D-—->W W-—=A W —D |Average
MMDT [17] - 44,6 + 0.3 - - 583405 -
Source CNN 542 +06 632+04 364=+0.1 893j:05 347+0.1 945+02| 62.0
Ours: dom confusion only 552+06 63709 412+0.1 91.3+04 41.11+0.0 9.5+0.1| 648



CycleGAN for Domain Adaptation

Pixel accuracy on
target

Source-only:  54.0%
Adapted (ours):83.6%

Source lmage’ (GTA5S) Adapted source image (Ours) Target image (CityScapes)

Source images (SVHN) Adapted source images (Ours) Target images (MNIST)

Hoffman et al. CyCADA: Cycle-Consistent Adversarial Domain Adaptation. 2018

Accuracy on target
Source-only:  67.1%
Adapted (ours):90.4%




CycleGAN

Reconstructed Source Image
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Self-Supervised Learning for UDA
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(a) Source classifier only

Sun et al. 2019



Self-Supervised Learning for UDA

i Self-supervised
classifier #1

Source

classifier
Source
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(a) Source classifier only (b) adding a self-supervised task

Sun et al. 2019



Self-Supervised Learning for UDA
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(a) Source classifier only (b) adding a self-supervised task (c) adding more tasks

Sun et al. 2019




Self-Supervised Learning for UDA

Task Images and self-supervised labels
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Self-Supervised Learning for UDA
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Self-Supervised Learning for UDA

GTAS — Cityscapes

M w @ 5 8 z
8 S " 9 o 8 g E £ 2
T 8 = 5 g =2 € € & E ¢ § 4 8 g § € B
: 2 2 3§ 8§ 2 B E ¢ OE F L of g E 2 E B Z mwu
Source only 28.8 127 39.6 94 35 18.1 227 94 809 124 458 539 9.6 747 209 150 0.0 194 39 253
Ours 69.9 227 69.7 18.1 99 13.5 187 89 803 194 584 538 2.6 751 136 52 03 81 12 289
CyCADA 79.1 33.1 77.9 234 173 32.1 333 31.8 81.5 267 69.0 62.8 147 745 209 256 69 188 204 39.5
Ours + CyCADA 86.6 37.8 80.8 29.7 164 28.9 309 22.2 83.8 37.1 769 60.1 7.8 84.1 30.8 32.1 12 232 133 412
Oracle 97.3 79.8 88.6 325 482 56.3 63.6 73.3 89.0 58.9 93.0 78.2 552 922 450 673 39.6 499 73.6 67.4




Semi-Supervised Learning



(0) Seed Images
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Data Distillation: Towards Omni-
Supervised Learning

transform A —> model A

image > transform B —> model A > ensemble

transform C —— model A

Y

student model >  predict

Data Distillation

Radosavovic et al. 2017



Data Distillation: Towards Omni-
Supervised Learning

o Boal - A

transform A transform B transform C ensemble

Figure 2. Ensembling keypoint predictions from multiple data transformations can yield a single superior (automatic) annotation.
For visualization purposes all images and keypoint predictions are transformed back to their original coordinate frame.
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