Multi-Task, Adaptation, Transfer Learning

Xiaolong Wang

This Class

- Multi-task Learning
- Domain Adaptation
- Semi-supervised Learning

Multi-task with Multiple Networks

https://ruder.io/multi-task/

Multi-task with One Network

https://ruder.io/multi-task/

We have already seen in detection

We have already seen in detection

	AP ^{bb} _{person}	AP _{person}	AP ^{kp}
Faster R-CNN	52.5		<u>.</u>
Mask R-CNN, mask-only	53.6	45.8	-
Mask R-CNN, keypoint-only	50.7	040	64.2
Mask R-CNN, keypoint & mask	52.0	45.1	64.7

Table 5. Multi-task learning of box, mask, and keypoint about the *person* category, evaluated on minival. All entries are trained on the same data for fair comparisons. The backbone is ResNet-50-FPN. The entry with 64.2 AP on minival has 62.7 AP on test-dev. The entry with 64.7 AP on minival has 63.1 AP on test-dev (see Table 4).

Attributes

Has saddle Four legs

Object location

Misra et al. Cross-stitch Networks for Multi-task Learning. 2016.

How to share?

How to share?

Another Task

How to share?

What do people usually do?

- Given a new set of tasks:
 - Enumerate many ConvNet architectures
 - Train all of them
 - Pick the best architecture

Progressive Networks

$$h_i^{(k)} = f\left(W_i^{(k)}h_{i-1}^{(k)} + \sum_{j < k} U_i^{(k:j)}h_{i-1}^{(j)}\right)$$

Rusu et al. Progressive Neural Networks. 2016.

Progressive Networks

- We want to re-use the past experience as much as possible
- But we do not want to forget about the old tasks, i.e., catastrophic forgetting

When train a new task, we need to train the task head and shared network together.

Changing shared features might lead to **catastrophic forgetting**

Disentanglement:

Shared network should capture the commons across tasks

Individual heads model taskspecifics

Adversarial Learning:

Input different task and images to shared backbone, the output features should be in the same distribution.

Use D to force it.

Domain Adaptation

Domain Adaptation: Train on Source adapt to Target

Source Domain $\sim P_S(X, Y)$

lots of labeled data

 $D_S = \{(\mathbf{x}_i, y_i), \forall i \in \{1, \dots, N\}\}$

Credits: https://people.eecs.berkeley.edu/~jhoffman/talks/taskcv-iccv15.pdf

Train on Source adapt to Target

Train on Source adapt to Target

	$A \to W$	$A \rightarrow D$	$D \to A$	$D \to W$	$W \to A$	$W \rightarrow D$	Average
MMDT [18]	—	44.6 ± 0.3	-	—	-	58.3 ± 0.5	-
Source CNN	54.2 ± 0.6	63.2 ± 0.4	$\textbf{36.4} \pm \textbf{0.1}$	89.3 ± 0.5	34.7 ± 0.1	94.5 ± 0.2	62.0
Ours: dom confusion only	55.2 ± 0.6	63.7 ± 0.9	41.2 ± 0.1	$\textbf{91.3} \pm \textbf{0.4}$	$\textbf{41.1} \pm \textbf{0.0}$	96.5 ± 0.1	64.8

CycleGAN for Domain Adaptation

Hoffman et al. CyCADA: Cycle-Consistent Adversarial Domain Adaptation. 2018

CycleGAN

Reconstructed Source Image

(a) Source classifier only

Sun et al. 2019

$\mathbf{GTA5} ightarrow \mathbf{Cityscapes}$																				
	road	sidewalk	building	wall	fence	pole	traffic light	traffic sign	vegetation	terrain	sky	person	rider	car	truck	bus	train	motorbike	bicycle	mIoU
Source only Ours	28.8 69.9	12.7 22.7	39.6 69.7	9.4 18.1	3.5 9.9	18.1 13.5	22.7 18.7	9.4 8.9	80.9 80.3	12.4 19.4	45.8 58.4	53.9 53.8	9.6 2.6	74.7 75.1	20.9 13.6	15.0 5.2	0.0 0.3	19.4 8.1	3.9 1.2	25.3 28.9
CyCADA Ours + CyCADA	79.1 86.6	33.1 37.8	77.9 80.8	23.4 29.7	17.3 16.4	32.1 28.9	33.3 30.9	31.8 22.2	81.5 83.8	26.7 37.1	69.0 76.9	62.8 60.1	14.7 7.8	74.5 84.1	20.9 30.8	25.6 32.1	6.9 1.2	18.8 23.2	20.4 13.3	39.5 41.2
Oracle	97.3	79.8	88.6	32.5	48.2	56.3	63.6	73.3	89.0	58.9	93.0	78.2	55.2	92.2	45.0	67.3	39.6	49.9	73.6	67.4

Semi-Supervised Learning

Chen et al. 2013

Data Distillation: Towards Omni-Supervised Learning

Radosavovic et al. 2017

Data Distillation: Towards Omni-Supervised Learning

Figure 2. Ensembling keypoint predictions from multiple data transformations can yield a single superior (automatic) annotation. For visualization purposes all images and keypoint predictions are transformed back to their original coordinate frame.

This Class

- Multi-task Learning
- Domain Adaptation
- Semi-supervised Learning