Deep 3D Vision

Xiaolong Wang



This Class — 3D representations

 Volumetric representation
* Mesh
* Point cloud

* Implicit functions



How to represent objects in 3D?

* VVolumetric



?

 Mesh

AR AR AN
.v.vnv.%ﬁr“p
oy

I ;
VAVSEE oS
= f

R

AR TACRS AT

i_..rw.ﬁﬂﬂﬁhgm _
SN

i

Rt
A

LAY,
Vv

O,
iy

LAY,
LA
e

Ay
L
LK

How to represent objects in 3D



How to represent objects in 3D?

* Point cloud




How to represent objects in 3D?

 Implicit function




1.Voxel: Discretizing into grids

Pros:
» Easy to process with Neural Networks

Cons:
* Cubic memory
[ imited resolution

Voxels



3D-R2N2

Given single/multi-view images, output 3D voxel occupancies
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(a) Images of objects we wish to reconstruct (b) Overview of the network

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction, ECCV, 2016.



3D-R2N2

Overall architecture

3 conv ’

3 x 3 x3conv

X 7 cony
FC Layer

3 x 3 x 3 conv
3D Softmax Layver

3D LSTM Layer

]
=
%
- r
=
)

pooling

( 3 x 3 conv )

pooling

7

( 3 x 3 conv }

| 3 x 3 conv ’
unpooling
( 3 x 3 x Ium\’
unpooling
.
( 3 x 3 x 3 conv)
unpooling
.
‘ 3 x 3 x

pooling

pooling
;
' 3 x 3 conv ’
pooling
| 3 x 3 conv ’
pooling

unpooling

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction, ECCV, 2016.



3D-R2N2

Do not need to be trained
per category.

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction, ECCV, 2016.



2.Mesh: Discretizing into vertices

Pros:
» Easy to process with Neural Networks

Cons:
» Usually require class-specific template
 Limited by the number of vertices

Mesh



Learn mesh deformation

1. Given a collection of images from the same category
2. Jointly predict 3D mesh, texture and camera parameters

Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.



Learn mesh deformation

Key 1: Learned deformation from mean shape

Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.



Learn mesh deformation

Key 2: Predict texture UV map
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Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.



Learn mesh deformation
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Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.




Learn mesh deformation

Learning Category-Specific Mesh Reconstruction from Image Collections, ECCV, 2018.



3.Point cloud: Discretizing into points

Pros:
» Flexible and memory efficient

Cons:
* Not model topology / connection
* Limited by the number of input points

Point cloud



PointNet

End-to-end learning given unordered and scattered point cloud, extracted features can be
applied to multiple down-streaming tasks
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR, 2017.



PointNet

Key 1: the model should be invariant to input point permutations
Proposed solution: use symmetric functions, e.g., max pooling
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Picture from hitp://stanford.edu/~rqi/pointnet/docs/cvpri17_pointnet_slides.pdf


http://stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf

PointNet

Key 2: invariance under geometric transformations
Proposed solution: affine transformation

3 T-Net | transform 3
arams: 3x3

Matrix
N Mult.

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR, 2017.
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http://stanford.edu/~rqi/pointnet/docs/cvpr17_pointnet_slides.pdf

input points

PointNet
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input points

PointNet
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PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR, 2017.



4. Implicit function: continuous representation

Pros:
* No discretization
* Arbitrary resolution and memory efficient
/) * Arbitrary topology
| -  Not restricted to specific class

Cons:
* Post-processing to extract meshes



Occupancy VS Signed Distance
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Occupancy Network Deep Signed Distance Function

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.
Learning Implicit Fields for Generative Shape Modeling, CVPR, 2019



Occupancy Network
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* Input sampled 3D points and
encoded features; output 0/1

fo:R3x X —0,1]

 Fully connected layers + conditional
batch normalization (CBN)

» Handling various input data
* Image: Resnet
* Point cloud: PointNet
« Voxel: 3D CNN

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.



Occupancy Network

Occupancy Classification £;(6)

L (6) = z BCE(fe (pij' xi), Oij)
=1

* Dij: location of the j point in the /" sample.
° X;:the ™ sample the fy conditioned.

° 0;j: occupancy of the j point in the /" sample.



Marching cubes to extract meshes
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Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.



Occupancy Network

Discretize Vs continuous

1283 OUrS

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.



Occupancy Network

Input  3D-R2N2 PSGN Pix2Mesh AtlasNet Ours

Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.



DeepSDF

Occupancy

SDF =0

O level-set

Sign-distance-function

SDF <0 SDF >0

full level-set



DeepSDF

(X,y,Z) .—>

. 6\@ to

the surface

fo(x) = SDF(x),Vx € Q



DeepSDF
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Shape —_—
Code .

(X,y,Z) ._'

fo(zi,x) =~ SDF*(x)

Function
« 8 fully-connected layers

« weight-norm



DeepSDF
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* Auto-decoder architecture
fo(zi, @) ~ SDF?:(ZL’)

Shape code Sampled point

» Training:

» Jointly learning of shape codes and
model parameters

« Shape codes are randomly initialized

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.



DeepSDF
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* Fully connected layers + Weight
normalization

« Tanh() at the output
« Signed Distance clipping

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.



DeepSDF
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DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.



DeepSDF

Generate shapes via shape code interpolation
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DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.



DeepSDF

Partial point cloud completion

(a) Input Depth (b) Completion (ours) (¢) Second View (ours) (d) Ground truth (e) 3D-EPN

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019.



NeRF

Applied to image rendering

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020.



NeRF

1. Given sampled 3D points + camera directions, output RGB values and density
2. Image can be generated via volume rendering
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Summary

 Volumetric representation
* Mesh
* Point cloud

* Implicit functions
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