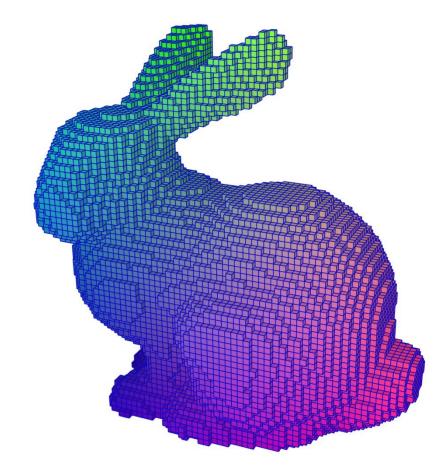
Deep 3D Vision

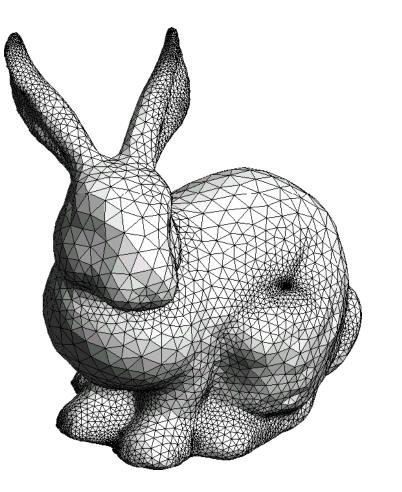
Xiaolong Wang

This Class – 3D representations

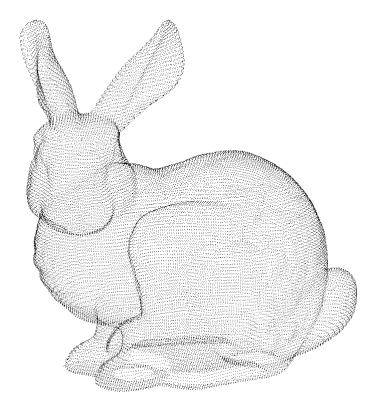
- Volumetric representation
- Mesh
- Point cloud
- Implicit functions



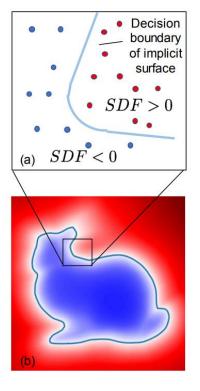
- Volumetric
- Mesh
- Point cloud
- Implicit function



- Volumetric
- Mesh
- Point cloud
- Implicit function



- Volumetric
- Mesh
- Point cloud
- Implicit function



- Volumetric
- Mesh
- Point cloud
- Implicit function

1.Voxel: Discretizing into grids

Pros:

• Easy to process with Neural Networks

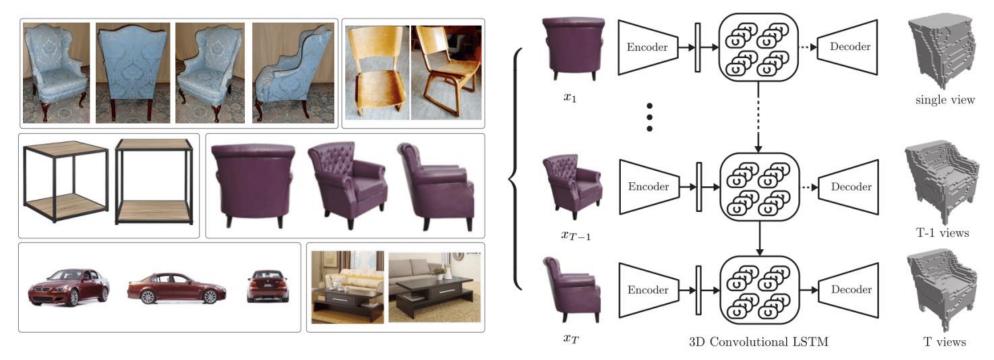
Cons:

- Cubic memory
- Limited resolution

Voxels

3D-R2N2

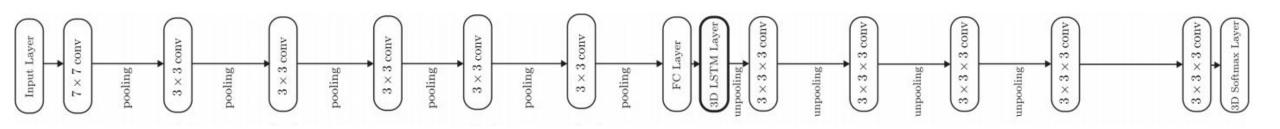
Given single/multi-view images, output 3D voxel occupancies



(a) Images of objects we wish to reconstruct (b) Overview of the network

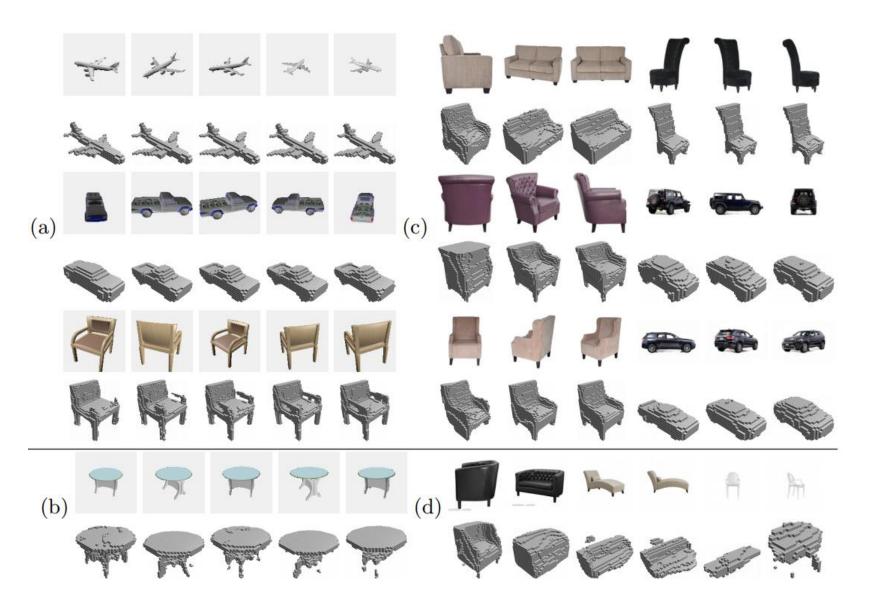
3D-R2N2

Overall architecture



3D-R2N2

Do not need to be trained per category.



2.Mesh: Discretizing into vertices

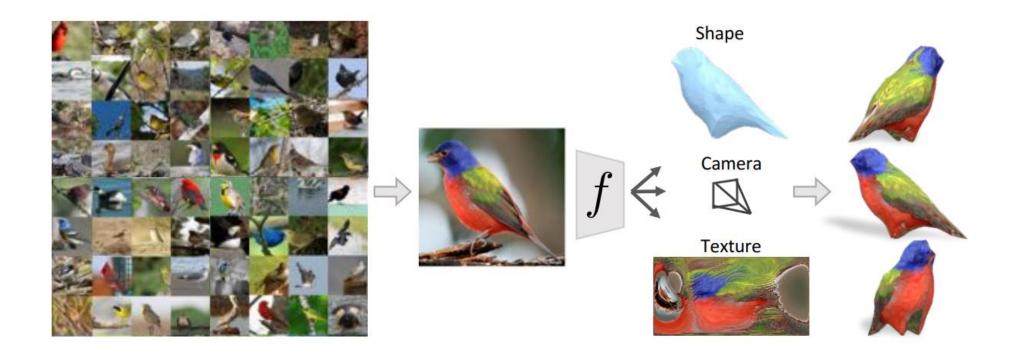
Pros:

• Easy to process with Neural Networks

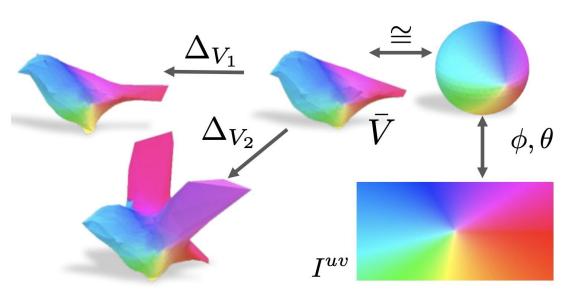
Cons:

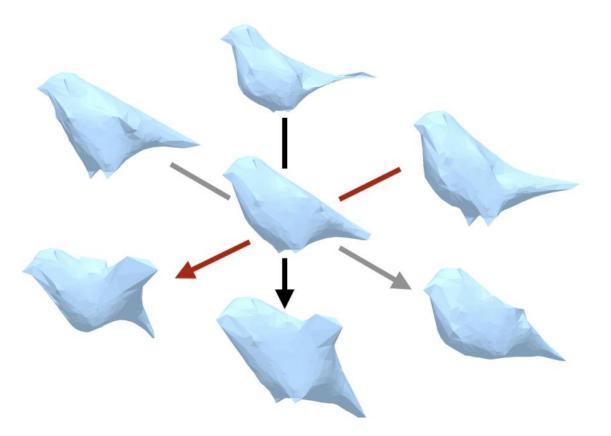
- Usually require class-specific template
- Limited by the number of vertices

Given a collection of images from the same category
Jointly predict 3D mesh, texture and camera parameters

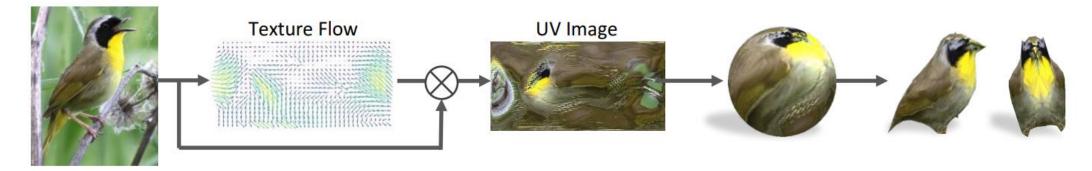


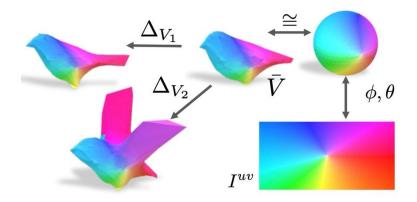
Key 1: Learned deformation from mean shape

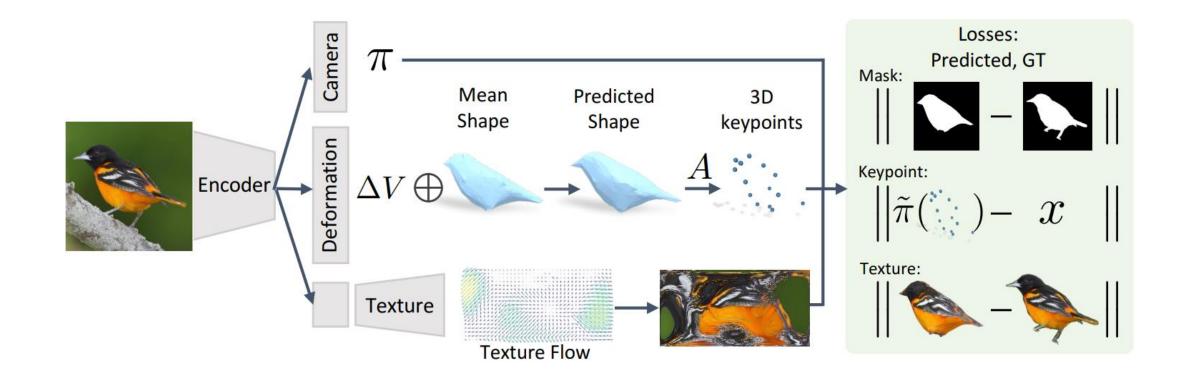




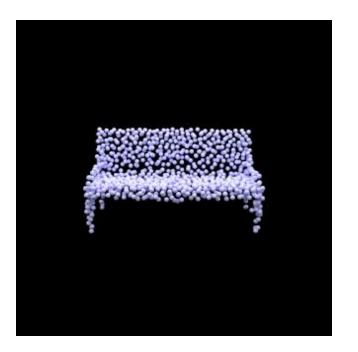
Key 2: Predict texture UV map







3.Point cloud: Discretizing into points



Point cloud

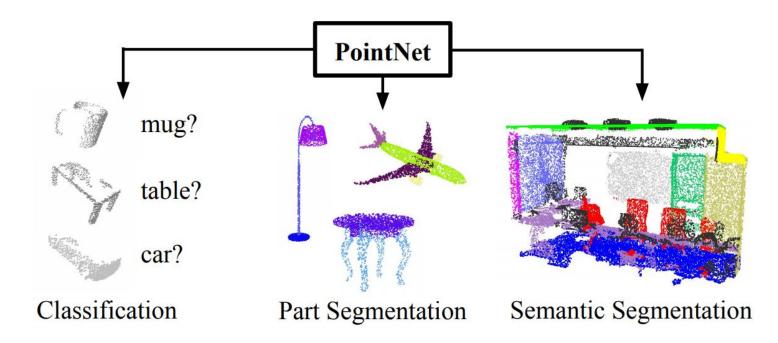
Pros:

• Flexible and memory efficient

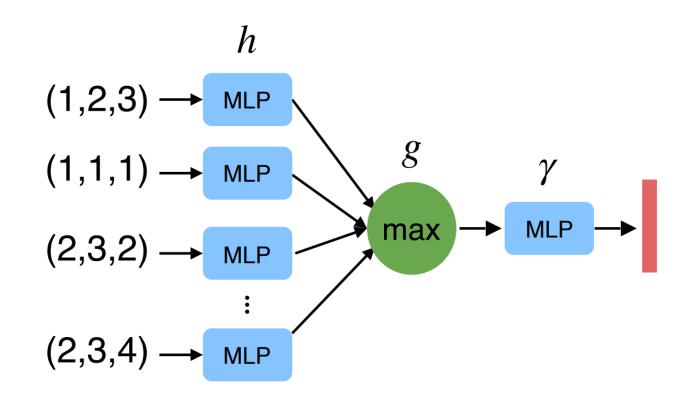
Cons:

- Not model topology / connection
- Limited by the number of input points

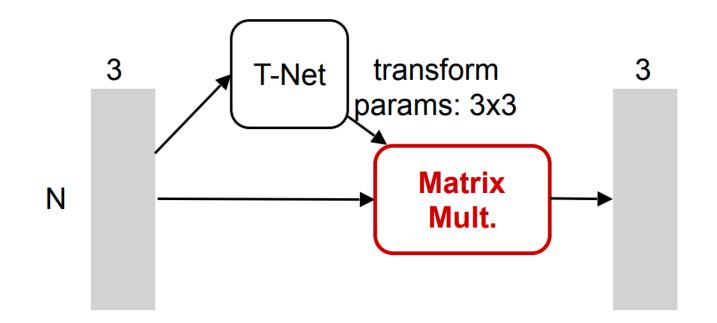
End-to-end learning given unordered and scattered point cloud, extracted features can be applied to multiple down-streaming tasks

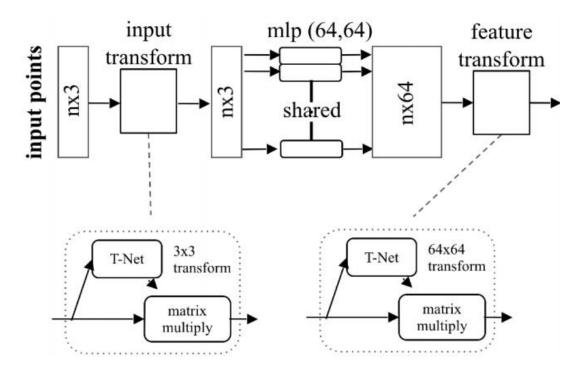


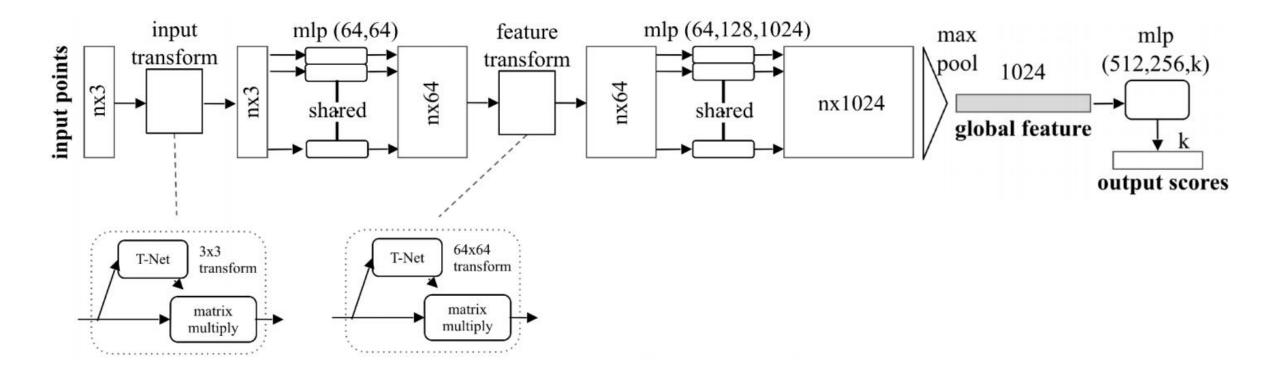
Key 1: the model should be invariant to input point permutations Proposed solution: use symmetric functions, e.g., max pooling

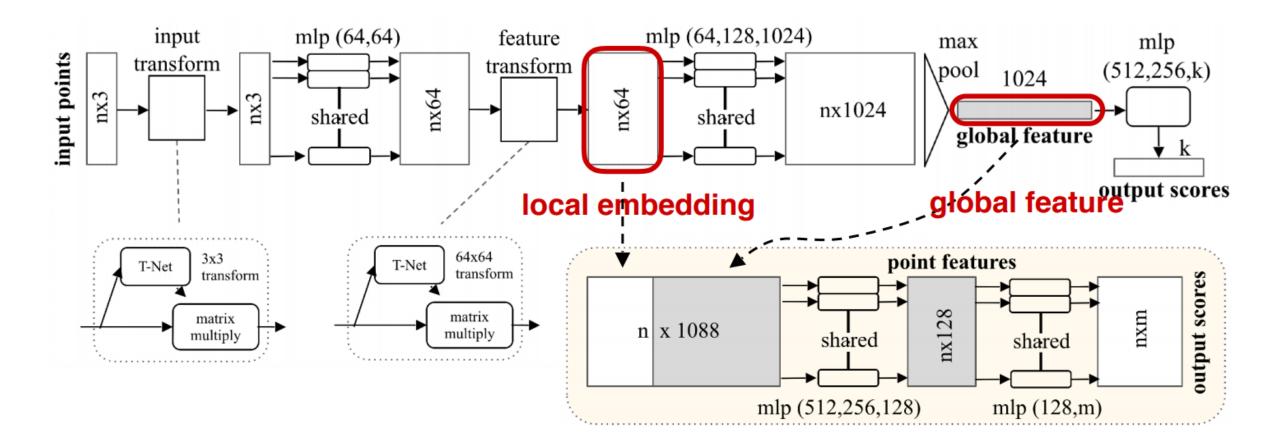


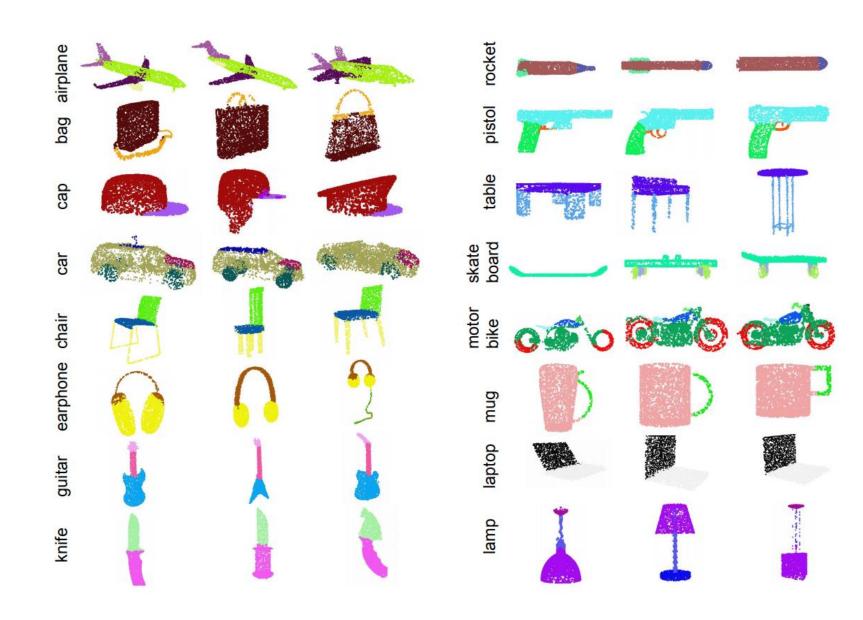
Key 2: invariance under geometric transformations Proposed solution: affine transformation











4. Implicit function: continuous representation

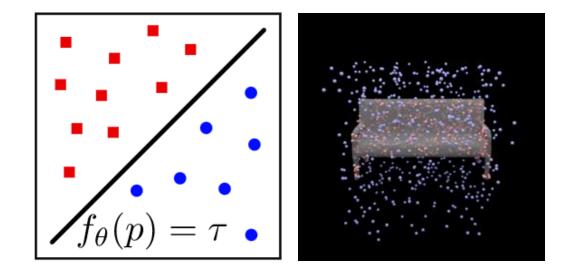
Pros:

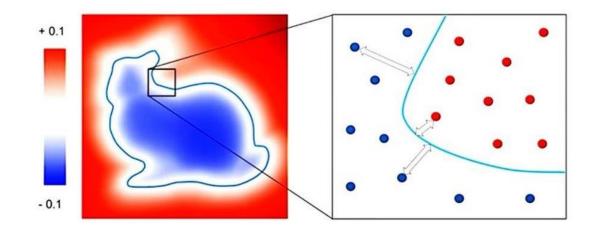
- No discretization
- Arbitrary resolution and memory efficient
- Arbitrary topology
- Not restricted to specific class

Cons:

• Post-processing to extract meshes

Occupancy VS Signed Distance



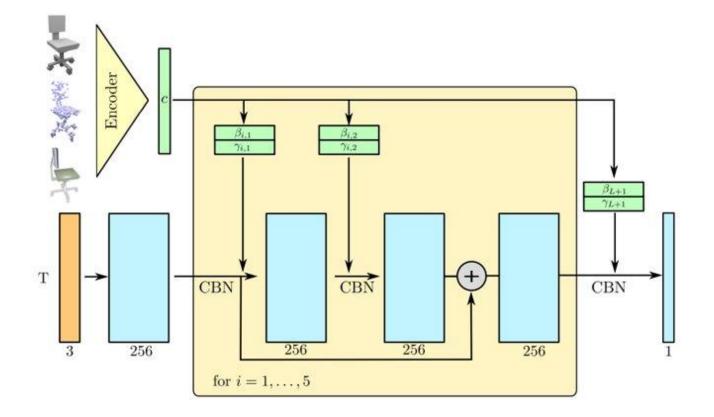


Occupancy Network

Deep Signed Distance Function

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019. Learning Implicit Fields for Generative Shape Modeling, CVPR, 2019

Occupancy Network



 Input sampled 3D points and encoded features; output 0/1

 $f_{\theta} : \mathbb{R}^3 \times \mathcal{X} \to [0, 1]$

- Fully connected layers + conditional batch normalization (CBN)
- Handling various input data
 - Image: Resnet
 - Point cloud: PointNet
 - Voxel: 3D CNN

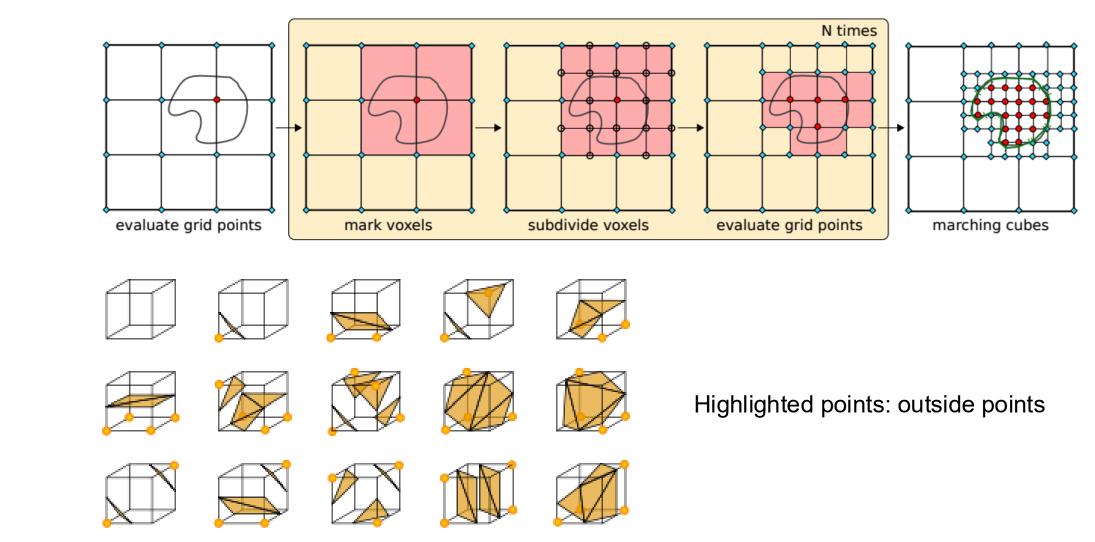
Occupancy Network

Occupancy Classification $\mathcal{L}_i(\theta)$

$$\mathcal{L}_{i}(\theta) = \sum_{j=1}^{K} BCE(f_{\theta}(p_{ij}, x_{i}), o_{ij})$$

- p_{ij} : location of the j^{th} point in the i^{th} sample.
- x_i : the *i*th sample the f_{θ} conditioned.
- O_{ij} : occupancy of the *j*th point in the *i*th sample.

Marching cubes to extract meshes



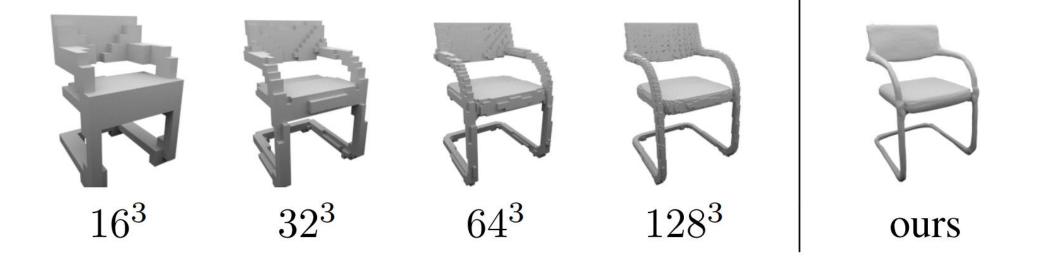
2D

3D

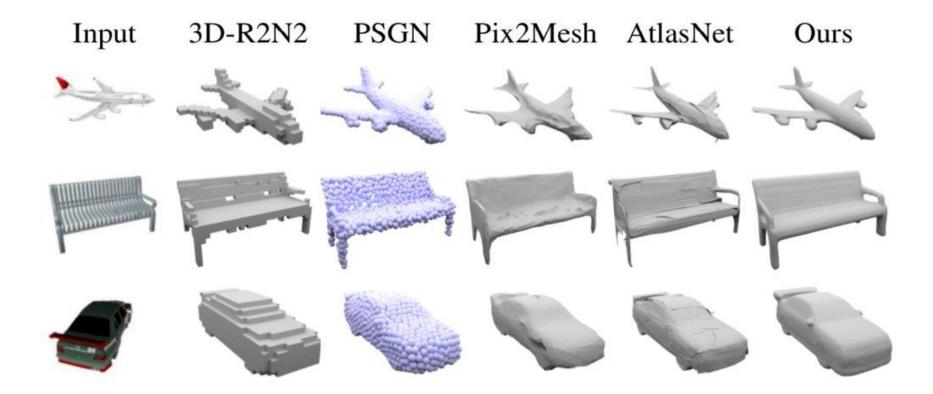
Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019.

Occupancy Network

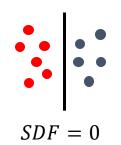
Discretize Vs continuous



Occupancy Network

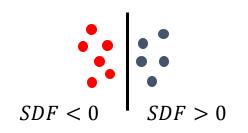


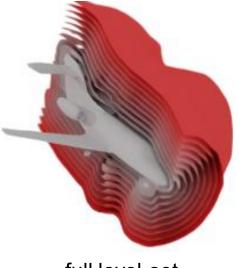
Occupancy



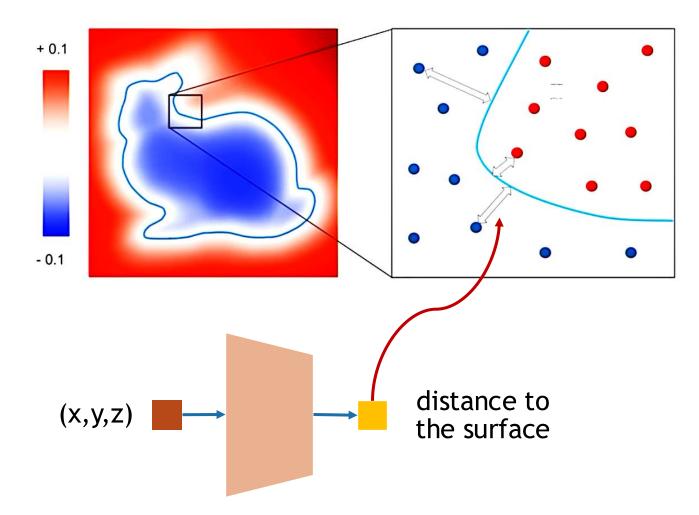
0 level-set

Sign-distance-function

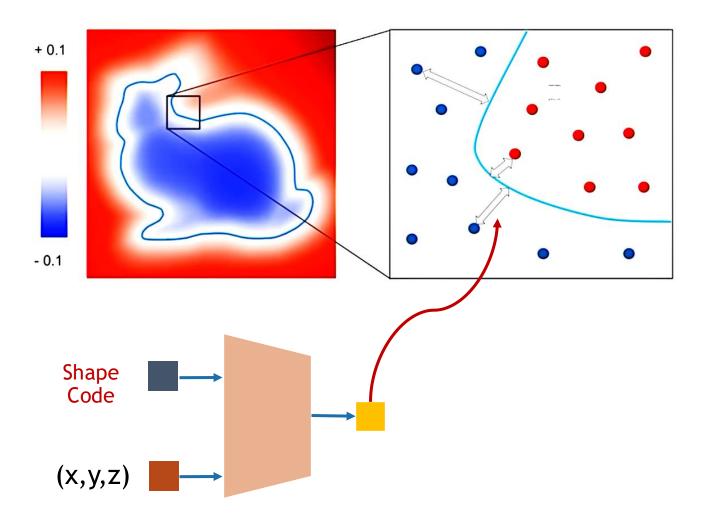




full level-set



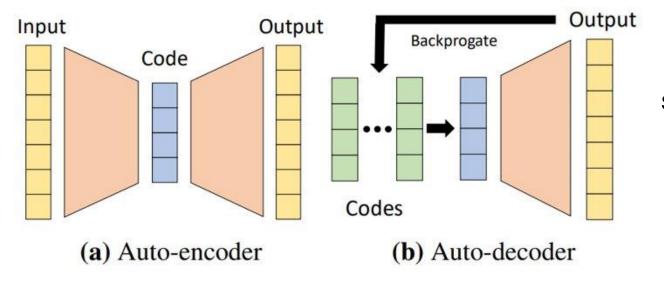
$f_{\theta}(x) \approx SDF(x), \forall x \in \Omega$



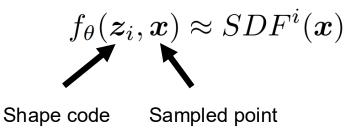
$$f_{\theta}(\mathbf{z_i}, x) \approx SDF^i(x)$$

Function

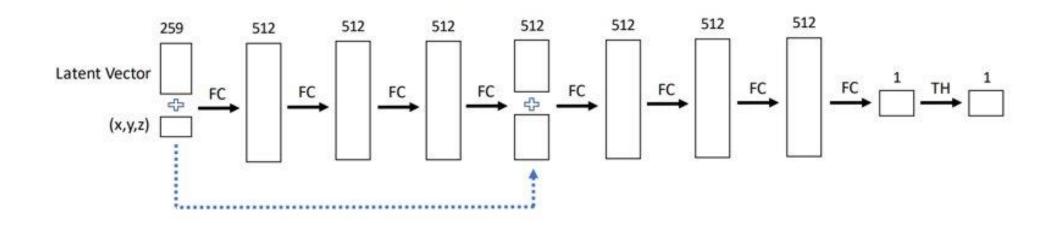
- 8 fully-connected layers
- weight-norm



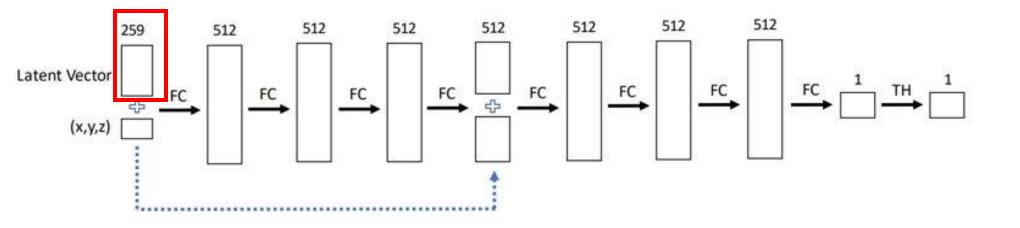
• Auto-decoder architecture



- Training:
 - Jointly learning of shape codes and model parameters
 - Shape codes are randomly initialized



- Fully connected layers + Weight normalization
- Tanh() at the output
- Signed Distance clipping



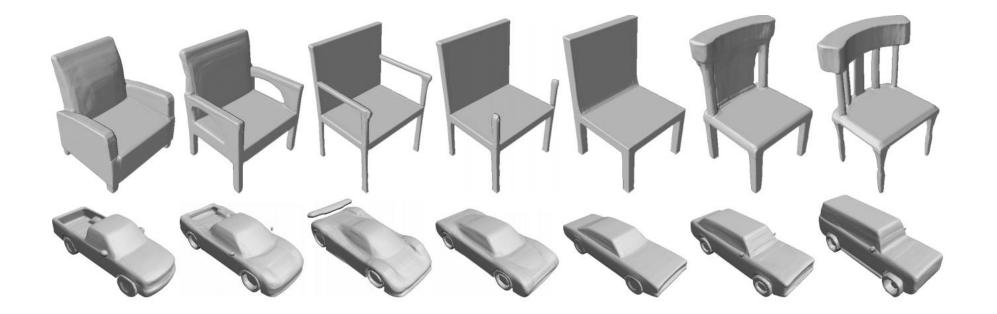
- Optimization-based inference
 - Fix model parameters
 - Infer the shape code of the obervation

$$\underset{\theta, \{\boldsymbol{z}_i\}_{i=1}^N}{\operatorname{arg\,min}} \sum_{i=1}^N \left(\sum_{j=1}^K \mathcal{L}(f_{\theta}(\boldsymbol{z}_i, \boldsymbol{x}_j), s_j) + \frac{1}{\sigma^2} ||\boldsymbol{z}_i||_2^2 \right)$$

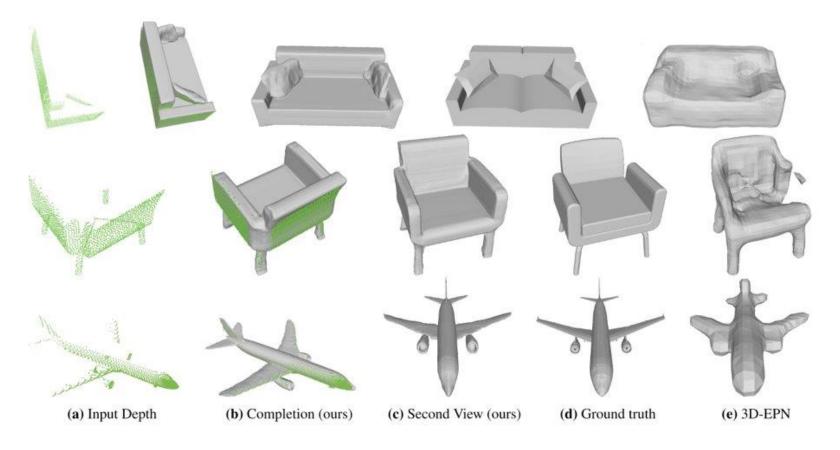
Signed Distance Loss Shape code

regularization

Generate shapes via shape code interpolation



Partial point cloud completion

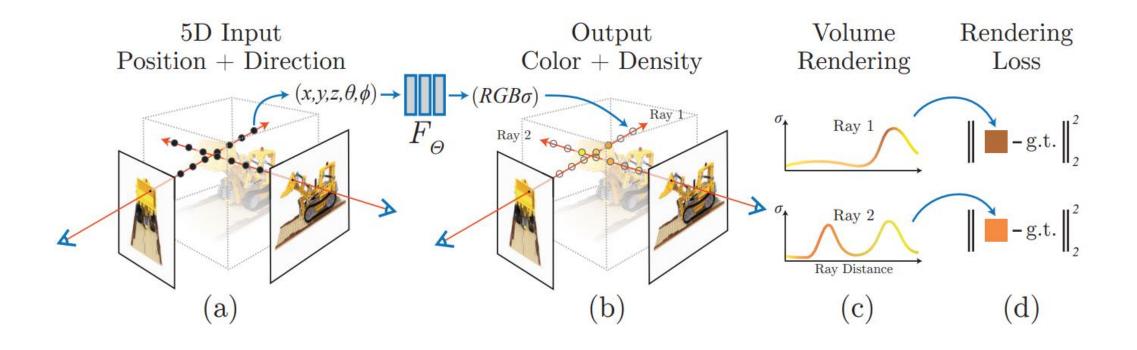


NeRF

Applied to image rendering

NeRF

Given sampled 3D points + camera directions, output RGB values and density
Image can be generated via volume rendering



Summary

- Volumetric representation
- Mesh
- Point cloud
- Implicit functions