Image Classification:
K-NN and Linear Classifier

Xiaolong Wang

Today: Two basic methods

* Nearest Neighbors

e Linear Classifier

Image Classification

An image is a 300 x 500 x 3
Tensor.

Each bit has value in the
range [0, 255]

Images with different background

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Images with occlusion

Images with illumination

Images with Deformation

Nearest Neighbor Classifier

Nearest Neighbor

Training set:

SR S) v RS

Mushroom

Ant Car

Testing: Compute the distance between a test image and training images

Nearest Neighbor

 What metric? What representation?
* Metric, L1 distance:

h,
d(xq,x,) = Zh,w‘xl "

test image training image
56 | 32 | 10 | 18 10 | 20 | 24 | 17
90 | 23 | 128|133 8 | 10 | 89 | 100
24 | 26 | 178 | 200 12 | 16 | 178 | 170
2 | 0 2585|220 4 | 32 |233 112

h,w

pixel-wise absolute value differences

46

12

14

1

82

13

39

33

12

10

0

30

2

32

22

108

add
— 456

Recall Supervised Learning

y = f(x)
T N

output classifier input
label image

« Training (or learning): given a training set of labeled
examples {(x,,v,), ..., (xy, yy)}, train a predictor f

* Testing (or inference): apply predictor f to a new test
example x and output the predicted value y = f(x)

Nearest neighbor classifier

]
m -~ © ®
o N O Training

Training Test data from
data from . example class 2
class 1

= o

]
»
]

* f(x) = the label of the closest example (computed via a
distance metric)

 Store all the training data, search all data each test time
given a test example

K-nearest neighbor classifier

]
n -~ ¢ ®
o N O Training

Training Test data from
data from . example class 2
class 1

= o

]
»
]

« 1 example is sometimes not enough.

* K-NN, K=5: FIind closest 5 examples instead of 1. Follow the label of
the majority in the NN examples.

K-NN examples (K=10), based on pixel-
wise difference

“d T T |
E-EGEREBE " R
frd g @ rT@7N -
PR [S1=1CR I AT

Goods and Bads of Nearest Neighbor

e Good:

* Do not require training
« Simple and robust to outliers

* Bad:

« Storage: needs to store the whole dataset

* Time: needs to go over each training data point, inference time grows
linearly as the training data increases

« Can we compress the training samples to a set of weights?

Linear Classifier

Linear Classifier

" ®

. S Training
Training data from
data from . class 2
class 1 .

. o
[]
O
[]

» Goal: Learn a d-dimentional vector of parameters W € R¢,
given a set of d-dimentional data

* Prediction: f(x) = Wix; + Wox, + ..+ Wyxy = Wx

Linear Classifier e ™ o ® Cuss

* Prediction: f(x) = Wix; + Woxy + .+ Wyxy = Wx

* If f(x) > 0, x belongstoclass 1, if f(x) < 0, x belongs to class
2.

« See W as the compression of the whole training dataset, and
we only need to compute 1 multiplication for obtaining the label.

Linear Classifier: adding bias

= ®
[] O »

. O Training
Training u data from
data from class 2
class 1 ‘

. o
[]
O
[]

* Prediction: f(x) = Wix; + Woxy + .+ Wyxs +b=Wx+b

* b € RY, bis only a 1-dimentional digit for 2-class classification

Linear Classifier: Multiple Class

* 1 plane is not enough

* Multiple planes

car classifier

airplane classifie/

deer classifier

Source: Andrej Karpathy, http://cs231n.qithub.io/linear-classify/

http://cs231n.github.io/linear-classify/

Linear Classifier: Multiple Class

* Instead of learning one vector of weights, we will need to learn
one vector of weights for each category:

 Adog classifier: f;(x) = Wlx + b?

- A cat classifier: f,(x) = W?x + b?
« A ship classifier: f3(x) = W3x + b3

* Select the class with the max classification score

Example: Represent an image with 4 pixels

Flatten tensors into a vector

56

231

24

Input image

Example: Represent an image with 4 pixels

Visual Viewpoint

Input image
B8 ' 7230,
oS
2452
F] b p
y v
0.2 | -0.5 1.5 | 1.3 0 | .25
W
0.1 | 2.0 21 | 0.0 0.2 | -0.3
b 10l 3.2 1.2
Score -96.8 437.9 61.95

f(x)=Wx+b

x € R3Y7%2 (32 x32%3)
W E R3072
b eR!

Example: Represent an image with 4 pixels

Visual Viewpoint

f(x) = Wx +b
dnnleoloE x € R°7% (32 X 32 X 3)
i 1‘.»1 :yz ; W €]R3072

Score -9:.8 43t.9 61?95 b E [Rl

Visualizing W In 10 different classes:

plane car bird cat deer dog frog horse ship tmck
v "

Training the Linear Classifier

* Linear regression

* Logistic regression

Training with Linear Regression

» Given the training data {(x, y,), ..., (xy, Yy)}, drawn from
distribution D.

* Find predictor f(x) so that it performs well on test (unseen)
data drawn from the same distribution D.

« Potential problem: What if the data is not taken from the same
distribution D?

How to evaluate “performs well™?

» Define an expected loss as,
[E(x,y)wD [l(fl X, 3’)]

» To approximate the loss using N examples {(x, V1), ..., (xy, Yu) 1,

.
NZ: L(f,x;,y;)
=1

Linear Regression

 Loss: Using L2 distance:
[(f,x,y) = (f(x) —y)? = Wx; + b — y;)*

» Average through all the examples

1< :
NZ(W%‘ +b—y;)
i=1

Linear Regression

N
! 2
NZ(W'XL' +b—y;)
i=1

* In two-class classification: y € {—1,1}. However, there is no
regulation to constrain the output range.

* In multiple-class case, for each class we perform two-class
classification: y € {—1,1}.

 Not convenient for classification

The Sigmoid Function (2-class)

» Squash the linear response of the classifier to the interval [0,1]
to represent the prediction probability:

1

o(Wx) = 1+ exp(—Wx)

: sig(t)

0.8
0.6

0.

0.2

The Sigmoid Function (2-class)

1
1+exp(—Wx)

» Thus we let P(y = 1|x) = o(Wx) =

* For the other category:

Ply=-1lx) =1-P(y=1|lx) =1 —-a(Wx)

_ 1 B exp(—Wx)
B 1 +exp(—=Wx) 1+ exp(—Wx)
1
= = —W
exp(Wx) + 1 o(=Wx)

The sigmoid function is symmetric: 1 — o(Wx) = o(—Wx)

Logistic regression: Training Objective
e Given: {(x;,y;),i =1,..,n}, y; € {—1,1}

N

R 1

L(W) = —NZIOgP(yilxi)
i—1

1 1
= —= Y logaWx) - > logl1—a(Wx))

iy;=1 Lyj=—1
1 1
— _N_z 1og0(Wx,;)—N. z log[o (—Wx;)]
Ly;i=1 Lyji=—1

1
_ ‘NZ log o (y;Wx;)
l

Optimization

Gradient descent

e Start with some initial

A
estimate of W. R -
A - TR

» At each step, compute]

the gradient VL(W). ﬂ

_ _ 4 / Global cost minimum

* Move in the opposite P W)

direction of the gradient S

w

2D Example

Take a small step in the opposite direction, using learning rate «a:

W« W —aVL(W)

Source: Svetlana Lazebnik

Gradients for linear regression

N
. 1
W) ==) (Wi =y’
i=1
Compute the gradient:

N
-~ 1
VIW) =+ > Vi (Wx; = 3)?
=1

N
1
= NZ 2(Wx; — yi) x;
L=

Gradients for linear regression

Update rule:
W« W —aVL(W)

N
~ 1
VL(W) = Nz 2(Wx; — yi) x;
i=1
Combine both:

N
1
W(_W_QNZZ(Wxi_yi) Xi

=1

We update the parameters iteratively, compute the gradient over all
examples each gradient step

Gradient descent
W« W —aVL(W)
* We can set @ = 0.1 or other smaller number if the parameters

diverge.

« However, it might be too slow to perform one update by
calculating the gradients over all the training examples.

« Can we approximate the gradients more efficiently?

Stochastic gradient descent (SGD)

» We approximate the gradient of the whole dataset VL(W) by
using only ONE example (x;,y;) as VL(W, x;, v;)

* Instead of

N
WeW+ a%z o(—yiWx;)yix;
i=1
* Use
WeW+ao(—yWx)yx;

« Since gradient on each example is unstable, it is “stochastic”

Stochastic gradient descent (SGD)

* Instead of using only one example, or the whole dataset, we
can try something in between.

« Sample a batch of examples (e.g., B = 128 examples) to
compute the gradients for update

B

1
WeW+ CKEZ o(—yiWx;)yix;
i=1

* batch size: A trade off between accurate gradient approximation
and efficiency

Regularization

Overfitting

We want to estimate a function to fit the green data points.

’ r\v\/\\
X
@ @
2 O
a a| Kk
4 \)/
Size Size Size
0, + O x 6o+ B,x + B,x2 Byt O1x + B,x2 + B,x2+ B,x2

Underfit Ideal fit Overfit

Overfitting

We want to estimate a classifier to separate two types of data.

Underfit Ideal fit Overfit

One trick to prevent overfitting

« Adding regularization in training objective, L2 regularization:

~ 2 1
L(W) — _“Wll T ;Z?:lL(W)xi)yi)

L2 regularization Loss from data

!

n
1
=1

To prevent overfitting

n
1
W W—a(AW+VWEZL(W,Xi,yi))
=1

Gradients from
L2 regularization

!

Also called weight decay

We usually set A = 0.00005 in neural networks

Compare K-NN and Linear classifier

* Do not need training * Need training

* Time consuming in test time * Time efficient in test time

* Non-parametric, explicitly « Parametric, use parameters to
search through data "memorize” the dataset

« More robust to outliers, using « Can be sensitive to outliers

larger K

Next class

 Training Multi-Layer Perceptrons

» Back-propagation

	Slide 1: Image Classification: K-NN and Linear Classifier
	Slide 2: Today: Two basic methods
	Slide 3: Image Classification
	Slide 4: Images with different background
	Slide 5: Images with occlusion
	Slide 6: Images with illumination
	Slide 7: Images with Deformation
	Slide 8: Nearest Neighbor Classifier
	Slide 9: Nearest Neighbor
	Slide 10: Nearest Neighbor
	Slide 11: Recall Supervised Learning
	Slide 12: Nearest neighbor classifier
	Slide 13: K-nearest neighbor classifier
	Slide 14: K-NN examples (K=10), based on pixel-wise difference
	Slide 15: Goods and Bads of Nearest Neighbor
	Slide 16: Linear Classifier
	Slide 17: Linear Classifier
	Slide 18: Linear Classifier
	Slide 19: Linear Classifier: adding bias
	Slide 20: Linear Classifier: Multiple Class
	Slide 21: Linear Classifier: Multiple Class
	Slide 22: Example: Represent an image with 4 pixels
	Slide 23: Example: Represent an image with 4 pixels
	Slide 24: Example: Represent an image with 4 pixels
	Slide 25: Training the Linear Classifier
	Slide 26: Training with Linear Regression
	Slide 27: How to evaluate “performs well”?
	Slide 28: Linear Regression
	Slide 29: Linear Regression
	Slide 30: The Sigmoid Function (2-class)
	Slide 31: The Sigmoid Function (2-class)
	Slide 32: Logistic regression: Training Objective
	Slide 33: Optimization
	Slide 34: Gradient descent
	Slide 35: 2D Example
	Slide 36: Gradients for linear regression
	Slide 37: Gradients for linear regression
	Slide 38: Gradient descent
	Slide 39: Stochastic gradient descent (SGD)
	Slide 40: Stochastic gradient descent (SGD)
	Slide 41: Regularization
	Slide 42: Overfitting
	Slide 43: Overfitting
	Slide 44: One trick to prevent overfitting
	Slide 45: To prevent overfitting
	Slide 46: Compare K-NN and Linear classifier
	Slide 47: Next class

