
Convolutional Neural 
Networks 1

Xiaolong Wang



Last Class

• Multi-layer Neural Networks

• Training Neural Networks with back-propagation



This Class

• Convolutional Operation

• Convolutional Neural Networks

• Different Elements in Training ConvNets

Slides partially from: http://cs231n.stanford.edu/,  https://slazebni.cs.illinois.edu/fall20/

http://cs231n.stanford.edu/
https://slazebni.cs.illinois.edu/fall20/


Convolutional Neural Networks

AlexNet (Krizhevsky et al. 2012)



Structural Prior in Images

• Disadvantage of MLP: 
• Large number of parameters
• First layer: (32 x 32 x 3) x 128 = 393,216

• Why is large number of parameters bad?
• Overfitting



Structural Prior in Images

• ConvNets use the structural prior in images:
• There are repetitive patterns in images
• We should re-use and share the filter across the whole image
• Reduce parameters, avoid overfitting



image

Convolution

Given a 3 ×3 filter

Compute the response at location (𝑘, 𝑙)

𝑧(𝑘, 𝑙) = *
!,#$%&

&

𝑊 𝑖, 𝑗 𝑥(𝑘 + 𝑖, 𝑙 + 𝑗)



Convolution

0 1 2 2 2 0 1

1 0 2 1 2 0 2

2 1 0 2 0 0 1

1 0 2 1 2 0 2

0 1 2 2 2 0 1

1 0 2 1 2 0 2

2 1 0 2 0 0 1

1 0 -1

0 -1 1

-1 1 0

*
0 × 1 + 1 × 0 + 2 × −1

+ 1 × 0 + 0 × −1 + 2 × 1
+ 2 × −1 + 1 × 1 + 0 × 0
= −1



image

feature map

learned 
weights

Convolution



image

feature map

learned 
weights

Convolution

What is the feature map resolution?

Depends on padding and stride:

No padding, stride 1

Input

Output

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


image

feature map

learned 
weights

Convolution

What is the feature map resolution?

Depends on padding and stride:

With padding, stride 1

Input

Output

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


image

feature map

learned 
weights

Convolution

What is the feature map resolution?

Depends on padding and stride:

With padding, stride 2

Input

Output

https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic


image

feature map

Another 
learned 
weights

Convolution



image

feature map

Another 
learned 
weights

Convolution



image

feature map

Another 
learned 
weights

Convolution



𝐾 feature maps

𝐾 filters 

Convolution

convolutional layerimage



image

𝐿 feature maps in the 
next layer

convolutional layer
+ ReLU

Convolution

𝑑×𝑑×𝐾
filter

𝐿 filters

𝐾 feature maps



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=1



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=1



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=1



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=1



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=1

Output:  5 × 5 feature map



More examples on stride, padding, filter 
size

𝑛

𝑛

Input: 𝑛 × 𝑛 feature map

Filter: 𝑑 × 𝑑, stride=1

Output size:

𝑛 − 𝑑
𝑠𝑡𝑟𝑖𝑑𝑒

+ 1

𝑑



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=2



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=2



More examples on stride, padding, filter 
size

7

7

Input: 7 × 7 feature map

Filter: 3 × 3, stride=2

Output:  3 × 3 feature map

𝑛 − 𝑑
𝑠𝑡𝑟𝑖𝑑𝑒

+ 1 =
7 − 3
2

+ 1 = 3



More examples on stride, padding, filter 
size

Input: 7 × 7 feature map

Filter: 3 × 3, stride=2

Padding: 1

Output:  4 × 4 feature map

𝑛 + 2 × 𝑝𝑎𝑑 − 𝑑
𝑠𝑡𝑟𝑖𝑑𝑒

+ 1 =
7 + 2 − 3

2
+ 1 = 4



Max Pooling



Max Pooling



Max Pooling



Max Pooling



Why Max Pooling
• Save computation and memory
• Increase receptive field



Optimization methods



Mini-batch SGD

Loop:
• Sample a batch of data with size 𝑚: 𝑥&, 𝑦& , … , 𝑥' , 𝑦' , and 

forward the data to compute the loss 𝑙(𝑊, 𝑥! , 𝑦!). 
• Use back-prop to compute the gradients for each layer: 

∇C𝐿 =
1
𝑚
*
!$&

'

∇𝑙(𝑊, 𝑥! , 𝑦!)

• Update the model parameters with learning rate 𝛼:
𝑊 ← 𝑊 − 𝛼 ∇C𝐿



Problems with SGD

• Gradients are unstable



Problems with SGD
• Gradients are unstable

• Each time the gradient is estimated on a small batch, it will jitter a 
lot.



Problems with SGD

• It is easy to get stuck in a local minima:

𝑊

𝐿𝑜𝑠𝑠

If we compute the gradient only at this 
point, it can not go anywhere!



Problems with SGD

• Can we follow the trend instead just a local gradient? 

𝑊

𝐿𝑜𝑠𝑠



Problems with SGD

• Can we follow the trend instead just a local gradient? 

𝑊

𝐿𝑜𝑠𝑠

Saddle Points



SGD with momentum

• Use a momentum variable as a weighted average of previous 
gradients: 

𝑣()& = 𝛽𝑣( + ∇C𝐿
𝑊()& = 𝑊( − 𝛼𝑣()&

We use 𝑡 to index different training iterations, 𝛽 = 0.9 for training 
image classifiers.

𝛽𝑣!

∇$𝐿

𝑣!"#



SGD with momentum



Adaptive Gradient Descent

• Different parameters / weights can converge in different speed

• Especially different weights in different layers have different 
scales of gradients

• Can we adjust the learning rate automatically? 



AdaGrad

• Track the previous gradients, accumulate the magnitudes, and 
adjust the learning rate. 

• We want to give large learning rate for gradients with low 
magnitudes and give small learning rate for gradients with high 
magnitudes:

𝑚()& ← 𝑚( +
𝜕𝐿
𝜕𝑊(

*

𝑊()& ← 𝑊( −
𝛼

𝑚()& + 𝜖
𝜕𝐿
𝜕𝑊(



RMSProp

• The history of gradients are accumulated without forgetting in 
AdaGrad

• Introducing a decay factor 𝛽 (≥ 0.9) to reduce the effect of the 
previous gradients

𝑚()& ← 𝛽𝑚( + (1 − 𝛽)
𝜕𝐿
𝜕𝑊(

*

𝑊()& ← 𝑊( −
𝛼

𝑚()& + 𝜖
𝜕𝐿
𝜕𝑊(

J. Duchi, Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011  

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf


Adam

• Combining RMSProp and momentum:

𝑣()& = 𝛽&𝑣( +
𝜕𝐿
𝜕𝑊(

𝑚()& ← 𝛽*𝑚( + (1 − 𝛽*)
𝜕𝐿
𝜕𝑊(

*

𝑊()& ← 𝑊( −
𝛼

𝑚()& + 𝜖
𝑣()&

Default parameters from paper: 𝛽& = 0.9, 𝛽* = 0.999, 𝜂 = 1𝑒 − 3, 
𝜖 = 1𝑒 − 8

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

https://arxiv.org/abs/1412.6980


Which Optimizer to use? (Common 
Practice)

• SGD is widely used in (with larger lr, e.g., lr = 1e-2):  
• Image classification
• Object detection
• Other recognition tasks

• Adam is widely used in (with lower lr, e.g., lr = 2e-4):
• Image synthesis
• Image reconstruction
• Other reconstruction tasks



Which Optimizer to use? (Common 
Practice)

• SGD gives better performance than Adam in recognition tasks, 
but Adam is usually more stable and converge faster 

• For challenging tasks, if SGD does not work, we can try to use 
Adam



Learning Rate 𝛼



Learning rate



Learning rate

https://www.slideshare.net/ssuserf88631/scalable-machine-learning-73621818

Learning rate too large:
Hard to converge 

and will even diverge

Learning rate too small:
Converge very slowly 

and can easily fall in local minima

Start with large learning rate
and reduce over time



Learning Rate Decay

• The most common practice: multiply the LR with a constant 
every K epochs

Training image classifier with ImageNet:

Start LR=0.1 

Decay LR by multiplying 0.1 every 30 
epochs:
0~30 epochs: 0.1
30~60 epochs: 0.01
60~90 epochs: 0.001



Some experience on setting learning rate

• Try to make the initial LR as large as possible
• Good for exploration

• The initial LR is the most important one
• Most related to the performance
• Less easy to overfit

• Check the model performance after first LR for debug



Some experience on setting learning rate

• Instead of decaying LR at 30,60,90 epochs, if you want to save 
time, you can train with the first LR longer (50 epochs) and train 
with the following LR with shorter time (10 epochs each)

Can check the model to compare



Empirical rule

• If you times the batch size by 𝑘, you should increase the 
learning rate by 𝑘.

• For example, if you train a classification network using batch 
size 128, and learning rate 0.1 

-> batch size 256, learning rate 0.2
-> batch size 512, learning rate 0.4 



Next Class

More elements in training Convolutional Neural Networks


