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This Class: Recurrent Neural Networks

• The Basic RNN

• LSTM

• Application in language and vision tasks



The Basic RNN



Sequential prediction tasks

• So far, we focused mainly on prediction problems with fixed-size 
inputs and outputs

• But what if the input and/or output is a variable-length 
sequence?



Task 1: Sentiment classification

• Goal: classify a text sequence (e.g., restaurant, movie or 
product review, Tweet) as having positive or negative sentiment

• “The food was really good”

• “The vacuum cleaner broke within two weeks”

• “The movie had slow parts, but overall was worth watching”



Task 1: Sentiment classification
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Task 2: Machine translation

https://translate.google.com/

https://translate.google.com/


Task 2: Machine translation

“Correspondances” “La” “nature”

“Matches” “Nature” “is”



Task 3: Image caption generation

A cat sitting on a 

suitcase on the floor

A cat is sitting on a tree 

branch

A dog is running in the 

grass with a frisbee

A white teddy bear sitting in 

the grass

Two people walking on 

the beach with surfboards

Two giraffes standing in a 

grassy field

A man riding a dirt bike on 

a dirt track
A tennis player in action 

on the court

Source: J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture12.pdf


Task 3: Image caption generation
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Recurrent unit

Hidden layer

Classifier

Input at time 𝑡
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representation 
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ℎ𝑡 = tanh(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡



RNN: Computational Graph



RNN: Computational Graph

Re-use the same weight in every time step 



RNN: Computational Graph
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RNN: Computational Graph

Re-use the same weight in every time step 



RNN: Computational Graph

Re-use the same weight in every time step 



Backpropagation through time

Loss



Backpropagation through time (BPTT)
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Backpropagation through time (BPTT)
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en
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Char-RNN

Hidden state ℎ𝑖

One-hot encoding 𝑥𝑖

Output symbol 𝑦𝑖

Input symbol

Output layer 
(linear + softmax)
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iteration



Long short-term memory (LSTM)



Vanishing Gradients in RNNs
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Vanishing Gradients in RNNs

h1 h2 hn

en

h0  x1 h1  x2 hn-1  xn

𝜕𝑒

𝜕ℎ𝑡−1
= 𝑊ℎ

𝑇 1 − tanh2 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 ⨀
𝜕𝑒

𝜕ℎ𝑡

Computing gradient for ℎ0

involves many multiplications by 𝑊ℎ
𝑇

(and rescalings between 0 and 1)

Gradients will vanish if largest 

singular value of 𝑊ℎ is less than 1

and explode if it’s greater than 1



Long short-term memory (LSTM) cell

Cell
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• Add a memory cell that is not subject to matrix multiplication or squishing, 
thereby avoiding gradient decay
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Long short-term memory (LSTM) cell
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Long short-term memory (LSTM) cell
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Long short-term memory (LSTM) cell
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The gradients back-propagated from 𝑐𝑡 to 𝑐𝑡−1 are maintained. Thus we
can do learning for long-term



Adding a forget gate for short-term
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The gradients back-propagated from 𝑐𝑡 to 𝑐𝑡−1 are adjusted by 𝑓𝑡 . 



Application in language and vision tasks



Image caption generation

Words of reference caption (one-hot encoding)

Word embedding

Softmax probability over next word

Log-likelihood of next reference word

Training time

• Maximize likelihood of 

reference captions

Vinyals et al. 2015
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Image caption generation

• Minimize negative log-likelihood of the ground truth caption 
𝑌∗ = (𝑌1

∗, … , 𝑌𝑁
∗) given image 𝐼: 

𝐿 𝐼, 𝑌∗ = − ෍
𝑡=1

𝑁

log 𝑃𝑊(𝑌𝑖
∗|𝑌1

∗, … , 𝑌𝑖−1
∗ , 𝐼)



Image caption generation



Visual Question Answering (VQA)



Visual Question Answering (VQA)

Agrawal et al. 2015



Long-term Recurrent Convolutional 
Networks

Donahue et al. 2016



Summary

• The Basic RNN

• LSTM

• Application in language and vision tasks
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