Video Recognition

Xiaolong Wang
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This Class

« 2-Stream Networks for Action Recognition
* Temporal Convolution and 3D Convolution

« Temporal Detection and Segmentation



2-Stream Networks for Action Recognition



Task: Action Recognition

Drinking Kicking




Task: Action Recognition
 UCF-101 dataset

Basketball Basketball Dunk



2-Stream CNNs

Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 || full6 full7 ||softmax
7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
_ stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
L norm. norm. pool 2x2
single frame | P20l 2x2 || pool 2x2
/
. Temporal stream ConvNet
‘ conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
input - norm. ||pool 2x2 pool 2x2

. optical flow

Simonyan et al., 2014




2- Stream CNNs
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2-Stream CNNs

How to sample frames in test time

* Given a video, sample 10 frames with equal distance between
every two frames

* For example, given a video with 200 frames, we sample frame
1,21, 41, ..., 200 frame as inputs and forward 10 times



2-Stream CNNs
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Band Marching Haircut Head Ma«age Military Parade | Salsa Spin Drumming

Spatial stream ConvNet 73.0%
Temporal stream ConvNet 83.7%
Two-stream model (fusion by averaging) 86.9%
Two-stream model (fusion by SVM) 88.0%




Temporal Segment Networks (TSN)

* In the previous work, we train each frame individually

e Can we train multiple frames at the same time?



Temporal Segment Networks (TSN)

Segment Based Sampling Segment Aggregation
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Temporal Segment Networks (TSN)

Modalities TSN | Accuracy | Speed (FPS)
RGB+Flow No 92.4% 14
RGB+Flow Yes | 94.9% 14




Temporal Relation Network (TRN)

mmmmm 2 -frame relation
= 3-frame relation
mmmmm 4-frame relation

Pretending to put something next to something

Zhou et al., 2018



Something-Something Dataset

Classes

Putting something on a surface 4,081
Moving something up 3,790
Covering something with something 3,530
Pushing something from left to right 3,442
Moving something down 3,242
Pushing something from right to left 3,195
Uncovering something 3,004
Taking one of many similar things on the table 2,969
Turning something upside down 2,943
Tearing something into two pieces 2,849
Putting something into something 2,783

Squeezing something 2,631




The problem of Action Recognition




Temporal Relation Network (TRN)
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Short summary

« Basic 2-Stream, train on each frame individually = temporal
order does not matter

TSN, use average pooling to aggregate video frames during
training - temporal order does not matter

 TRN, use concatenation and FC to aggregate video frames
during training - temporal order matters



Temporal Convolution and 3D Convolution



Temporal Convolution
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Figure 1: A second of generated speech.
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3D Convolution

Tran et al., 2015



3D Convolution

output

a— output

W
(a) 2D convolution (b) 2D convolution on multiple frames



3D Convolution
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(@) 2D convolution (b) 2D convolution on multiple frames (c) 3D convolution



3D Convolution

3D data



3D Convolution
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(a) 2D convolution (b) 2D convolution on multiple frames (C) 3D convolution
Convila Conv2a |jof| Conv3a || Conv3b |l Conv4a || Conv4b ||z|| Conv5a || Conv5b |lgf| fc6 || fc7
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[softmax]



Inflated 3D ConvNets (I3D)

a) LSTM b) 3D-ConvNet c) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
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Carreira et al., 2018



Inflated 3D ConvNets (I13D)

Inflated Inception-V1

Rec. Field: Rec. Field:
Tl TE 11.27.27

S IXTXT
Video Cohy

stride 2

Rec. Field:

23,75,75
Rec. Field: Rec. Field:

59,219,219 99,539,539

Predictions

Inception Module (Inc.)




Kinetics Dataset

(c) shakmg hands



Kinetics Dataset

(d) tickling



Inflated 3D ConvNets (I13D)

UCF-101 HMDB-51 Kinetics
Architecture RGB | Flow | RGB + Flow || RGB | Flow | RGB + Flow Flow | RGB + Flow
(a) LSTM 810 | - = 360 | - = =
(b) 3D-ConvNet 516 | - = 243 | - = =
(c) Two-Stream 83.6 | 85.6 91.2 432 | 563 58.3 65.6
(d) 3D-Fused 832 | 85.8 89.3 492 | 555 56.8 67.2
(e) Two-Stream I3D | 84.5 | 90.6 93.4 49.8 | 61.9 66.4 74.2




Separable 3D CNN (S3D)

Inception Module (Inc.)

Concatenation

Next Layer
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Separable 3D CNN (S3D)

Model | Top-1 (%) | Top-3 (%) | Params (M) | FLOPS (G)
I3D 71.1 89.3 12.06 107.89
S3D 12.2 90.6 8.77 66.38

S3D-G 74.7 93.4 11.56 71.38
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1xdxd
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How about using a 3D Network with only
2D Conv?

layer output size
convy 7x7, 64, stride 2, 2, 2 16x112x112
pooly 3x3x%3 max, stride 2, 2, 2 8X56x%56
[ 1x1,64 |
res2 3x3, 64 X3 8X56x%56
| 1xd, 256 |
poola 3x1x1 max, stride 2, 1, 1 4%x56%x56
[ 1x1,128 |
ress 3x3,128 | x4 4x28x%x28
| 1x1,512 |
1x1,256 |
resy 3x3, 256 X6 4x14x14
| 1x1,1024 |
[ 1x1,512 ]
ress 3X3.512 | X3 4xTx7T
| 1x1,2048 |
global average pool, fc Ix1x1

Wang et al., 2018



How much does temporal convolution
matters”?

Same network model, R101 | params FLOPs | top-1 top-5

remove all temporal C2D baseline - 1% 1% 73.1 91.0
conv J3%3%3 1.5% 1.8 74.1 91.2
I3D3%1x1 1.2x 1.5% 74 .4 1.1

Wang et al., 2018



The Problem iIs the Dataset

u » 4 D\ ‘s N\ ’
! ‘ \ f 3
I " . h .
| A X 0
: \l=

(a

.1 |

(c) shaking hands



Something-Something Dataset

Classes

Putting something on a surface 4,081
Moving something up 3,790
Covering something with something 3,530
Pushing something from left to right 3,442
Moving something down 3,242
Pushing something from right to left 3,195
Uncovering something 3,004
Taking one of many similar things on the table 2,969
Turning something upside down 2,943
Tearing something into two pieces 2,849
Putting something into something 2,783

Squeezing something 2,631




Spatial-Temporal Graph in Videos



Videos as Space-Time Region Graphs

Similarity Relations ~  ------ Spatial-Temporal Relations

Wang et al., 2018



Space-Time Interactions

Materzynska et al., 2020


https://joaanna.github.io/something_else/videos/tracking_annotations/10015.gif
https://joaanna.github.io/something_else/videos/tracking_annotations/130153.gif
https://joaanna.github.io/something_else/videos/tracking_annotations/154439.gif

Space-Time Interactions

Action Classification
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Skeleton-Based Action Recognition
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