Video Recognition

Xiaolong Wang

Previous classes

This Class

- 2-Stream Networks for Action Recognition
- Temporal Convolution and 3D Convolution
- Temporal Detection and Segmentation

2-Stream Networks for Action Recognition

Task: Action Recognition

Task: Action Recognition

• UCF-101 dataset

How to sample frames in test time

- Given a video, sample 10 frames with equal distance between every two frames
- For example, given a video with 200 frames, we sample frame 1, 21, 41, ..., 200 frame as inputs and forward 10 times

Spatial stream ConvNet	73.0%
Temporal stream ConvNet	83.7%
Two-stream model (fusion by averaging)	86.9%
Two-stream model (fusion by SVM)	88.0%

Temporal Segment Networks (TSN)

- In the previous work, we train each frame individually
- Can we train multiple frames at the same time?

Temporal Segment Networks (TSN)

Wang et al., 2016

Temporal Segment Networks (TSN)

Modalities	TSN	Accuracy	Speed (FPS)
RGB+Flow	No	92.4%	14
RGB+Flow	Yes	94.9%	14

Temporal Relation Network (TRN)

Zhou et al., 2018

Something-Something Dataset

Classes

Putting something on a surface	4
Moving something up	(
Covering something with something	Э
Pushing something from left to right	3
Moving something down	3
Pushing something from right to left	3 2
Uncovering something	Э
Taking one of many similar things on the table	2
Turning something upside down	2
Tearing something into two pieces	2
Putting something into something	2
Squeezing something	2

The problem of Action Recognition

Temporal Relation Network (TRN)

Short summary

- Basic 2-Stream, train on each frame individually → temporal order does not matter
- TSN, use average pooling to aggregate video frames during training → temporal order does not matter
- TRN, use concatenation and FC to aggregate video frames during training → temporal order matters

Temporal Convolution and 3D Convolution

Temporal Convolution

Figure 1: A second of generated speech.

Van den Oord et al., 2016

(a) 2D convolution

Tran et al., 2015

Conv1a =	Conv2a	Conv3a	Conv3b	Conv4a	Conv4b	Conv5a	Conv5b	හ <mark>ි fc6</mark>	fc7
64 ⁸	128 ^a	^ହ 256	256	512	512 ⁸	512	512	^a 4096	4096 ^H

Inflated 3D ConvNets (I3D)

Inflated 3D ConvNets (I3D)

Kinetics Dataset

(a) headbanging

(c) shaking hands

Kinetics Dataset

(b) stretching leg

(d) tickling

Inflated 3D ConvNets (I3D)

	UCF-101			HMDB-51			Kinetics		
Architecture	RGB	Flow	RGB + Flow	RGB Flow RGB + Flow		RGB	Flow	RGB + Flow	
(a) LSTM	81.0	-		36.0			63.3		
(b) 3D-ConvNet	51.6	:=:		24.3		-	56.1		
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	-	-	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

Separable 3D CNN (S3D)

Separable 3D CNN (S3D)

Model	Top-1 (%)	Top-5 (%)	Params (M)	FLOPS (G)
I3D	71.1	89.3	12.06	107.89
S3D	72.2	90.6	8.77	66.38
S3D-G	74.7	93.4	11.56	71.38

R(2+1)D

R(2+1)D

How about using a 3D Network with only 2D Conv?

	output size	
$conv_1$	7×7, 64, stride 2, 2, 2	16×112×112
$pool_1$	$3 \times 3 \times 3$ max, stride 2, 2, 2	8×56×56
res ₂	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	8×56×56
$pool_2$	$3 \times 1 \times 1$ max, stride 2, 1, 1	4×56×56
res ₃	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	4×28×28
res ₄	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	4×14×14
res ₅	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	4×7×7
g	lobal average pool, fc	1×1×1

Wang et al., 2018

How much does temporal convolution matters?

Same network.	model, R101	params	FLOPs	top-1	top-5
remove all temporal	C2D baseline	$1 \times$	$1 \times$	73.1	91.0
conv	$I3D_{3\times3\times3}$	$1.5 \times$	$1.8 \times$	74.1	91.2
	$I3D_{3 \times 1 \times 1}$	1.2 ×	$1.5 \times$	74.4	91.1

The Problem is the Dataset

(a) headbanging

(c) shaking hands

Something-Something Dataset

Classes

Putting something on a surface	4
Moving something up	(
Covering something with something	Э
Pushing something from left to right	3
Moving something down	3
Pushing something from right to left	19
Uncovering something	Э
Taking one of many similar things on the table	2
Turning something upside down	2
Tearing something into two pieces	2
Putting something into something	2
Squeezing something	2

Spatial-Temporal Graph in Videos

Videos as Space-Time Region Graphs

Wang et al., 2018

Space-Time Interactions

Materzynska et al., 2020

Space-Time Interactions

Skeleton-Based Action Recognition

