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Abstract

In recent years, there has been a renewed interest in
jointly modeling perception and action. At the core of this
investigation is the idea of modeling affordances1. However,
when it comes to predicting affordances, even the state of
the art approaches still do not use any ConvNets. Why is
that? Unlike semantic or 3D tasks, there still does not exist
any large-scale dataset for affordances. In this paper, we
tackle the challenge of creating one of the biggest dataset
for learning affordances. We use seven sitcoms to extract a
diverse set of scenes and how actors interact with different
objects in the scenes. Our dataset consists of more than 10K
scenes and 28K ways humans can interact with these 10K
images. We also propose a two-step approach to predict
affordances in a new scene. In the first step, given a location
in the scene we classify which of the 30 pose classes is the
likely affordance pose. Given the pose class and the scene,
we then use a Variational Autoencoder (VAE) [23] to extract
the scale and deformation of the pose. The VAE allows us to
sample the distribution of possible poses at test time. Finally,
we show the importance of large-scale data in learning a
generalizable and robust model of affordances.

1. Introduction
One of the long-term goals of computer vision, as it in-

tegrates with robotics, is to translate perception into action.
While vision tasks such as semantic or 3D understanding
have seen remarkable improvements in performance, the
task of translating perception into actions has not seen any
major gains. For example, the state of the art approaches in
predicting affordances still do not use any ConvNets with
the exception of [12]. Why is that? What is common across
the tasks affected by ConvNets is the availability of large
scale supervisions. For example, in semantic tasks, the su-
pervision comes from crowd-sourcing tools like Amazon
Mechanical Turk; and in 3D tasks, supervision comes from

⇤Indicates equal contribution.
1Affordances are opportunities of interaction in the scene. In other

words, it represents what actions can the object be used for.
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Figure 1. We propose to binge-watch sitcoms to extract one of the
largest affordance datasets ever. We use more than 100M frames
from seven different sitcoms to find empty scenes and same scene
with humans. This allows us to create a large-scale dataset with
scenes and their affordances.

structured light cameras such as the Kinect. But no such
datasets exist for supervising actions afforded by a scene.
Can we create a large-scale dataset that can alter the course
in this field as well?

There are several possible ways to create a large-scale
dataset for affordances: (a) First option is to label the data:
given empty images of room, we can ask mechanical turkers
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to label what actions can be done at different locations. How-
ever, labeling images with affordances is extremely difficult
and an unscalable solution. (b) The second option is to au-
tomatically generate data by doing actions themselves. One
can either use robots and reinforcement learning to explore
the world and the affordances. However, collecting large-
scale diverse data is not yet scalable in this manner. (c) A
third option is to use simulation: one such example is [12]
where they use the block geometric model of the world to
know where human skeletons would fit. However, this model
only captures physically likely actions and does not capture
the statistical probabilities behind every action. For example,
it allows predictions such as humans can sit on top of stoves;
and for the open space near doors it predicts walking as the
top prediction (even though it should be reaching the door).

In this paper, we propose another alternative: watch the
humans doing the actions and use those to learn affordances
of objects. But how do we find large-scale data to do that?
We propose to binge-watch sitcoms to extract one of the
largest affordance datasets ever. Specifically, we use every
episode and every frame of seven sitcoms 2 which amounts
to processing more than 100 Million frames to extract parts
of scenes with and without humans. We then perform auto-
matic registration techniques followed by manual cleaning
to transfer poses from scenes with humans to scenes without
humans. This leads to a dataset of 28882 poses in empty
scenes.

We then use this data to learn a mapping from scenes to
affordances. Specifically, we propose a two-step approach.
In the first step, given a location in the scene we classify
which of the 30 pose classes (learned from training data)
is the likely affordance pose. Given the pose class and the
scene, we then use the Variational Autoencoder (VAE) to
extract the scale and deformation of the pose. Instead of
giving a single answer or averaging the deformations, VAE
allows us to sample the distribution of possible poses at
test time. We show that training an affordance model on
large-scale dataset leads to a more generalizable and robust
model.

2. Related Work

The idea of affordances [14] was proposed by James J.
Gibson in late seventies, where he described affordances as
“opportunities for interactions” provided by the environment.
Inspired by Gibson’s ideas, our field has time and again fid-
dled with the idea of functional recognition [38, 36]. In most
cases, the common approach is to first estimate physical
attributes and then reason about affordances. Specifically,
manually-defined rules are used to reason about shape and
geometry to predict affordances [38, 40]. However, over

2How I Met Your Mother, Friends, Two and a Half Men, Frasier, Sein-
field, The Big Bang Theory, Everybody Loves Raymond

years, the idea of functional recognition took backstage be-
cause these approaches lacked the ability to learn from data
and handle the noisy input images.

On the other hand, we have made substantial progress
in the field of semantic image understanding. This is pri-
marily due to the result of availability of large scale train-
ing datasets [8, 31] and high capacity models like Con-
vNets [29, 28]. However, the success of ConvNets has not
resulted in significant gains for the field of functional recog-
nition. Our hypothesis is that this is due to the lack of large
scale training datasets for affordances. While it is easy to la-
bel objects and scenes, labeling affordances is still manually
intensive.

There are two alternatives to overcome this problem. First
is to estimate affordances by using reasoning on top of se-
mantic [6, 21, 4] and 3D [10, 2, 41, 15] scene understand-
ing. There has been a lot of recent work which follow this
alternative: [18, 25] model relationship between semantic
object classes and actions; Yao et al. [42] model relation-
ships between object and poses. These relationships can be
learned from videos [18], static images [42] or even time-
lapse videos [7]. Recently, [45] proposed a way to reason
about object affordances by combining object categories and
attributes in a knowledge base manner. Apart from using
semantics, 3D properties have also been used to estimate
affordances [19, 17, 11, 43, 5]. Finally, there have been
efforts to use specialized sensors such as Kinect to esti-
mate geometry followed by estimating affordances as well
[22, 26, 27, 46].

While the first alternative tries to estimate affordances in
low-data regime, a second alternative is to collect data for
affordances without asking humans to label each and every
pixel. One possible way is to have robots themselves explore
the world and collect data for how different objects can used.
For example, [34] uses self-supervised learning to learn
grasping affordances of objects or [1, 33] focus on learning
pushing affordances. However, using robots for affordance
supervision is still not a scalable solution since collecting
this data requires a lot of effort. Another possibility is to use
simulations [32]. For example, Fouhey et al. [12] propose a
3D-Human pose simulator which can collect large scale data
using 3D pose fitting. But this data only captures physical
notion of affordances and does not capture the statistical
probabilities behind every action. In this work, we propose to
collect one of the biggest affordance datasets using sitcoms
and minimal human inputs. Our approach sifts through
more than 100M frames to find high-quality scenes and
corresponding human poses to learn affordance properties
of objects.

3. Sitcom Affordance Dataset
Our first goal towards data-driven affordances is to collect

a large scale dataset for affordances. What we need is an
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Figure 2. Some example images from Sitcom Affordance dataset. Note that our images are quite diverse and we have large samples of
possible actions per image.

image dataset of scenes such as living rooms, bedrooms etc
and what actions can be performed in different parts of the
scene. In this paper, inspired by some recent work [20], we
represent the output space of affordances in terms of human
poses. But where can we find images of the same scene with
or without people in it?

The answer to the above question lies in exploiting the
TV Sitcoms. In sitcoms, characters share a common envi-
ronment, such as a home or workplace. A scene with exact
configuration of objects appears again and again as multi-
ple episodes are shot in it. For example, the living room in
Friends appears in all the 10 seasons and 240 episodes and
each actor labels the action space in the scene one by one as
they perform different activities.

We use seven such sitcoms and process more than 100M
frames of video to create the largest affordance dataset. We
follow a three-step approach to create the dataset: (1) As a
first step, we mine the 100M frames to find empty scenes or
sub-scenes. We use an empty scene classifier in conjunction
with face and person detector to find these scenes; (2) In
the second step, we use the empty scenes to find the same
scenes but with people performing actions. We use two
strategies to search for frames with people performing ac-
tions and transfer the estimated poses [3] to empty scenes by
simple alignment procedure; (3) In the final step, we perform
manual filtering and cleaning to create the dataset. We now
describe each of these steps in detail.

Extracting Empty Scenes

We use a combination of three different models to extract
empty scenes from 100M frames: face detection, human
detection and scene classification scores. In our experiment,
we find face detection [30] is the most reliable criteria. Thus,

we first filter out scenes based on the size of the largest
face detected in the scenes. We also applied Fast-RCNN to
detect humans [16] in the scene. We reject the scenes where
humans are detected. Finally, we have also trained a CNN
classifier for empty scenes. The positive training data for this
classifier are scenes in SUN-RGBD [37] and MIT67 [35];
the negative data are random video frames from the TV
series and Images-of-Groups [13]. The classifier is finetuned
on PlaceNet [44]. After training this classifier, we apply it
back on the TV series training data and select 1000 samples
with the highest prediction scores. We manually label these
1000 images and use them to fine-tuned the classifier again.
This “hard negative” mining procedure turns out to be very
effective and improve the generalization power of the CNN
across all TV series.

People Watching: Finding Scenes with People

We use two search strategies to find scenes with people. Our
first strategy is to use image retrieval where we use empty
scenes as query images and all the frames in the TV-series
as retrieval dataset. We use cosine distance on the pool5
features extracted by ImageNet pre-trained AlexNet. In our
experiments, we find the pool5 features are robust to small
changes of the image, such as the decorations and number
of people in the room, while still be able to capture the
spatial information. This allows us to directly transfer human
skeletons from matching images to the query image. We
show some examples of data generated using this approach
in the top two rows of Fig. 3.

Besides global matching of frames across different
episodes of TV shows, we also transfer human poses within
local shots (short clips at most 10 seconds) of videos. Specif-
ically, given one empty frame we look into the video frames
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(a) Global Matching

(b) Local Matching

Matching Image Transferred Pose Matching Image Transferred Pose Matching Image Transferred Pose

Figure 3. We propose to use two approaches to transfer poses. In global matching approach, we match an empty scene to all the images in
the sitcom. Sometimes the matches occur in different seasons. Given these matches, we transfer poses to the image. In the local matching
approach, we use the next 5-10 sec of video to transfer poses via optical-flow registration scheme.

ranging from 5 seconds before this frame to 5 seconds after
it. We perform pose estimation on every frame. We then
compute the camera motions of each frame with respect to
the empty frame by accumulating the optical flows. Given
these motion information, we can map the detected poses to
the empty frame, as shown in the bottom two rows in Fig. 3.

Manual Annotations

Source #Datapoints

HIMYM 3506
TBBT 3997

Friends 3872
TAAHM 3212

ELR 5210
Frasier 6018

Seinfeld 3067
Total 28882

Our goal is to use the
automated procedure above
to generate valid hypothesis
of possible poses in empty
scenes. However, the align-
ment procedure is not per-
fect by any means. Thus,
we also need human annota-
tors to manually adjust pose
joints by scaling and translat-
ing. In this way, the pose
in the empty scene can be
aligned with the human in the
image where the pose is transferred from. In cases where
the poses are not fitting with the scene, due to occlusions or
incorrect matching, we remove such poses. The final dataset
we obtain contains 28882 human poses inside 11449 indoor
scenes. The detailed statistics of how many poses for each
TV series are summarized in Table 3.

4. VAEs for Estimating Affordances
Given an indoor scene and the location, we want to predict

what is the most likely human pose. One naive approach
is training a ConvNet with the image and the location as
input, predict the heat maps for each joint of the pose as
state-of-the-art pose estimation approaches [3]. However,
our problem is very different from standard pose estimation,
since we do not have the actual human which can provide

the pose structure and regularize the output.
We explore an alternative way: we decompose the process

of predicting poses into two stages: (i) categorical prediction:
we first cluster all the human poses in the dataset into 30
clusters, and predict which pose cluster is most likely given
the location in the scene; (ii) given the pose cluster center,
we predict its scale as well as the deformations for pose
joints such that it fits into the real scene.

4.1. Pose Classification

As a first step, given an input image and a location, we
first do a categorical prediction of human poses. But what
are the right categories? We use a data-driven vocabulary in
our case. Specifically, we use randomly sampled 10K poses
from the training videos. We then compute the distances
between each pair of poses using procrustes analysis over
the 2D joint coordinates, and cluster them into 30 clusters
using k-mediod clustering. We visualize the centers of the
clusters as Fig. 5.

In the first stage of prediction, we train a ConvNet which
uses the location and the scene as input and predict the
likely pose class. Note that multiple pose classes could
be reasonable in a particular location (e.g. one can stand
before the chair or sit on the chair), thus we are not trying to
regress the exact pose class. Instead we predict a probability
distribution over all classes and select the most likely one.
The selected pose center can be further adjusted to fit in the
scene in the second stage.
Technical Details: The input to the ConvNet is the image
and the location where to predict likely pose. To represent
this point in the image, we crop a square patch using it as
the center and the side length is the height of the image
frame. We also crop another patch in a similar way except
that the length is half the height of the image. As illustrates
in Fig. 4 (a), the red dots on the input images represent the
location. The two cropped patches can offer different scales
of information and we also take the whole image as input.
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Figure 4. Our Affordance Prediction Model. The encoder and decoder in VAE share the weights which are highlighted as green. All fully
connected layers have 512 neurons unless it is specified in the figure.

Figure 5. Cluster centers of human poses in sitcom dataset. These
clusters are used as pose categories predicted by classification
network.

The 3 input images are all re-scaled to 227⇥ 227.
Given the 3 input images, they are forwarded to 3 Con-

vNets which share the weights between them. We apply
the AlexNet architecture [28] for the ConvNet here and con-
catenate the 3 fc7 outputs. The concatenated feature is
further fully connected to 30 outputs, which represents 30
pose classes. During training, we apply SoftMax classifi-
cation loss and the AlexNet is pre-trained with ImageNet
dataset [9].

4.2. Scale and Deformation Estimation

Given the pose class and scene, we need to predict the
scale and the deformations of each joint to fit the pose into
the scene. However, the scale and deformations of the pose
are not deterministic and there could be ambiguities. For
example, given an empty floor and a standing pose class,
it could be a child standing there (which corresponds to a
smaller scale) or an adult standing there (which corresponds
to a larger scale). Thus instead of directly training a ConvNet
to regress the scale and deformations, we apply the condi-
tional Variational Auto-Encoder (VAE) [23, 39] to generate
the scale and deformations conditioned on the input scene
and pose class.

Formulations for the conditional VAE. We applied the
conditional VAE to model the scale and deformations of
the estimated pose class. For each sample, we define the

deformations and scale as y, the conditioned input images
and pose class as x, and the latent variables sampled from a
distribution Q as z. Then the standard variational equality
can be represented as,

logP (y|x)�KL[Q(z|x, y)||P (z|x, y)]
= Ez⇠Q[logP (y|z, x)]�KL[Q(z|x, y)||P (z|x)], (1)

where KL represents the KL-divergence between the distri-
bution Q(z|x, y) and the distribution P (z|x). Note that in
VAE, we assume P (z|x) is a normal distribution N (0, 1).
The distribution Q is another normal distribution which can
be represented as Q(z|x, y) = Q(z|µ(x, y),�(x, y)), where
µ(x, y) and �(x, y) are estimated via the encoder in VAE.
The log-likelihood logP (y|z, x) is modeled by the decoder
in VAE. The details are explained as below.

Encoder. As Fig. 4(b) illustrates, the inputs of model
include 3 images which are obtained in the same way as the
classification network, a 30-d binary vector indicating the
pose class (only one dimension is activated as 1), and a 36-d
vector representing the ground truth scale and deformations.
The images are fed into the AlexNet model and we extract
the fc7 feature for each of them. The pose binary vector
and the vector of scale and deformations are both forwarded
though two fully connected layers. Each fully connected
layer has 512 neurons. The outputs for each components
are then concatenated together and fully connected to the
outputs. The dimension of the outputs is 30⇥ 2 which are
two vectors of mean µ(x, y) and variance �(x, y) of the
distribution Q.

We calculate the ground truth scale for the height of pose
sh as the actual pose height divided by the normalized height
(ranging from 0 to 1) of cluster center. The ground truth
scale for the width sw is calculated in a similar way. Given
the ground truth (sh, sw), we can re-scale the cluster cen-
ter and aligned it to the input location. The deformation
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for each joint is the spatial distance (dx, dy) between the
scaled center and ground truth pose. Since we have 17 pose
joints (dX, dY ) = (dx1, dy1, ..., dx17, dy17), there are 34
outputs representing the deformations. Together with the
scale sh, sw, the outputs of the generator are 36 real num-
bers.

Decoder. As Fig. 4(c) shows, the decoder has a similar
architecture as the encoder. Instead of taking a vector of
scale and deformations as input, we replace it with the latent
variables z. The output of the network is changed to a 36-
d vector of scale and deformations whose groundtruth is
identical to the 36-d input vector of the encoder. Note that we
share the feature representations for the conditional variables
(images and classes) between the encoder and decoder.

Training. As indicated by Eq. 1, we have two losses dur-
ing training the VAE model. To maximize the log-likelihood,
we apply a Euclidean distance loss to minimize distance
between the estimated scale and deformations y

⇤ and the
ground truths as,

L1 = ||y⇤ � y||2. (2)

And the other loss is to minimize the KL-divergence between
the estimated distribution Q and the normal distribution
N (0, 1) as,

L2 = KL[Q(z|µ(x, y),�(x, y))||N (0, 1)]. (3)

Note that the first loss L1 is applied on top of the decoder
model, and its gradient is backpropagated though all the
layers. To do this, we follow the reparameterization trick
introduced in [24]: we represent the latent variables as z =

µ(x, y) + �(x, y) · ↵, where ↵ is a variable sampled from
N (0, 1). In this way, the latent variables z is differentiable
with respect to µ and �.

4.3. Inference

Given the trained models, we want to tackle two tasks:
(i) generating poses on an empty location of a scene and (ii)
estimate if a pose fits the scene or not.

For the first task, given an image and a point representing
the location in the image, we first perform pose classification
and obtain the normalized center pose of the correspond-
ing class. The classification scores, together with the latent
variables z sampled from N (0, 1) and images are forwarded
to the VAE decoder model (Fig. 4 (c)). We scale the nor-
malized center with the inferred scale (s⇤h, s

⇤
w) and align the

pose with the input point. Then we adjust each joint of the
pose by adding the deformations (dX⇤

, dY

⇤
).

For the second task, we want to estimate whether a given
pose fits the scene or not. To do this, we first perform the
same estimation of the pose given an empty scene as the first
task, then we compute the euclidean distance D between the
estimated pose and the given pose. To ensure the robustness

of the estimation, we repeat this procedure by sampling
different z for m = 10 times, and calculate the average
distance 1

m

Pm
1 Di as the final result. If the final distance

is less than a threshold �, then the given pose is taken as a
reasonable pose.

5. Experiments and Results
We are going to evaluate our approach on two tasks: (i)

affordance prediction: given an input image and a location,
generate the likely human pose at that location; (ii) classify
whether a given pose in a scene is possible or not.

We train our models using data collected from the TV
series of “How I Met Your Mother”, “The Big Bang The-
ory”, “Two and A Half Man”, “Everyone Loves Raymond”,
“Frasier” and “Seinfeld”. The models are tested on the frames
collected from “Friends”. For training data, we have man-
ually filtered and labeled 25010 accurate poses over 10009
different scenes. For testing data, we have collected 3872
accurate poses over 1490 different scenes and we have also
artificially generated 9572 poses in the same scenes which
are either physically impossible or very unlikely to happen
in the real world.

During training, we initialize the AlexNet image feature
extractor with ImageNet pre-training and the other layers
are initialized randomly. We apply the Adam optimizer
during training with learning rate 0.0002 and momentum
term �1 = 0.5,�2 = 0.999. To show that large scale of data
matters, we perform the experiments on different size of the
dataset.

We also evaluate the performance of our approach as the
training dataset size increases. Specifically, we randomly
sample 2.5K and 10K of data for training, and compare these
models with our full model which uses 25K data for training.

Baseline We compare our VAE approach to a heatmap re-
gression based baseline. Essentially, we represent the human
skeletons as a 17-channel heatmap, one for each joint. We
train a three-tower AlexNet (upto conv5) architecture, where
each tower looks at a different scale of the image around
the given point. The towers have shared parameters and are
initialized with ImageNet. The outputs are concatenated
across the towers and passed through a convolution and de-
convolution layer to produce a 17 channel heatmap, which
is trained with euclidean loss.

5.1. Generating poses in the scenes

As we mentioned in the approach, we generate the human
pose via estimating the pose class and the scale as well as
deformations.
Qualitative results. We show our prediction results as
Fig. 6(a). We have shown that our model can generate very
reasonable poses including sitting on a coach, closing the
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(a) Predicted Poses

(b) Comparing to Ground Truth

Ours

GT

Ours
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Figure 6. Qualitative results of generating poses: We show qualitative results on scenes from Friends dataset. (a) As we can see the human
poses generated seem very reasonable. (b) We also compare the poses generated using our approach with the ground truth poses.

door and reaching to the table, etc. We also compare our
results with the ground truth as Fig. 6(b). We show that we
can generate reasonable results even though it can be very
different from the ground truth poses. For example, in the
3rd column of the 2nd row, we predict a pose sitting on a
bed while the ground truth is standing in front of the bed.

We have also visualized the results given different noise
z as inputs to the VAE Decoder during testing. For the same
scene and location, we can generate different poses as Fig. 7.

Quantitative results. To show that the generated poses are
in reasonable, we first evaluate the performance of our pose
classification network. Note that there could be multiple
reasonable poses in a given location, thus we show our 30-
class classification accuracies given top 1 to top 5 guesses.

We test our model on the 3872 samples from “Friends”, the
results is shown in Table 1. We compare models trained
on three different sizes of our dataset (2.5K, 10K and 25K).
We show that the more data we have, the higher accuracies
we can get. For the heatmap baseline, we use the inner
product of the predicted heatmap to assign the output to
the cluster centers. We obtain the top-5 assignments and
standard evaluation as above for classification performance.
As the numbers show, our approach clearly outperforms this
heatmap based baseline.

Human evaluation. We also perform human evaluation on
our approach. Given the ground truth pose and predicted
pose in the same location of the same image, we ask human
which one is more realistic. We find that 46% of the time
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Figure 7. Affordance results for VAE with different noise inputs. Each column includes two predictions results for the same inputs. Given
the human pose class, we show how VAE can be used to sample multiple scale and deformations.

Figure 8. Negative samples added in the test dataset. 71% of the test data is such images and 29% is positive examples.

Method Top-1 Top-2 Top-3 Top-4 Top-5
HeatMap (Baseline) 8.4 % 19.9% 30.1% 39.1% 47.3%
Training with 2.5K 11.7% 21.9% 29.7% 36.1% 41.8%
Training with 10K 13.3% 23.7% 32.3% 39.7% 46.8%
Training with 25K 14.9% 26.0% 36.0% 43.6% 50.9%

Table 1. Classification results on the test set.

Figure 9. PR curve for our second experiment: given an image
and pose, we produce a score on how probable it is. We use these
scores to compute the recall-precision graph.

the turkers think our prediction is more realistic. Note that
a random guess is 50%, which means our prediction results
are almost as real as the ground truth and the turkers can not
tell which is generated by our model.

5.2. Classifying given poses in the scenes

Given a pose in a location of the scene, we want to esti-
mate how likely the pose is using our model. We perform
our experiments on 3872 positive samples from “Friends”
and 9572 negative samples in the same scenes. We show

some of the negative samples as Fig. 8. Note that although
we use negative data in testing, but there is no negative data
involved in training. We show the Precision-Recall curve as
Fig. 9. Among all of our approaches, we find that training
with 25K data points give best results, which is consistent
with the first task. For the heatmap baseline, we again score
each sample as the inner product of predicted heatmap with
a heatmap representation of the labeled pose. We observe
that the baseline does better than our approach in high-recall
regimes, which can be explained by the fact that training
with euclidean loss generates an averaged-out output, which
is less likely to miss a pose.

6. Conclusion
In this paper, we present one of the biggest affordance

dataset. We use 100 Million frames from seven sitcoms to
extract diverse set of scenes and how actors interact with
different objects in those scenes. Our dataset consist of more
than 10K scenes and 28K ways humans can interact with
these 10K images. We also propose a two step approach
to predict affordance pose given an input image and the
location. In the first step, we classify which of the 30 pose
classes is the likely affordance pose. Given the pose class
and the scene,we then use Variational Autoencoder (VAE)
to extract the scale and deformation of the pose. VAE allows
us to sample the distribution of possible poses at test time.
Our results indicate that the poses generated by using our
approach are quite realistic.
Acknowledgement: This work was supported by a research grant from
Apple Inc. Any views, opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and should not be
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Supplementary Materials

Binge Watching: Scaling A↵ordance Learning from Sitcoms

1 Dataset Visualization

We visualize more examples in our dataset.

1



2 Qualitative Results

We visualize more qualitative results of predicting poses in an empty position in the scene. We compare our approach
to the baseline approach. As described in the experiment section, our baseline is a direct regression method for
estimating heatmap for pose joints. We compute the joint position from the heatmap as the max response position
in the heatmap. Since the regression approach can only generate an averaged-out output for each human joint, it
is not clear where the joint should be. In the following visualizations, each row represents one set of examples, the
first image is the groud truth, the second one is the baseline results, and the last one is our prediction result. We
show our apporach can generate much more realistic results compared to the baseline.

Ground Truth Baseline Ours
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3 Application: A↵ordance as a Prior for Human Pose Estimation

Our a↵ordance model can o↵er a prior to improve human pose estimation. As it is shown in the following examples,
on each row, we have a scene with human and its corresponding empty scene. For the empty scene (1st column),
we estimate the a↵ordance using our model. Note that although we only visualize one sampled pose here, we have
actually sampled 50 times using our VAE model in this application. In this way, we have a heatmap (distribution)
for each pose joint as an a↵ordance prior. On the image with human (2nd column), we apply the state-of-the-art
Hourglass pose estimator [1] and generate the pose heatmaps. We apply weighted averaging for these two types of
heatmaps for each joint, and generate the final results (3rd column). We show some cases where the pose estimator
fails to handle the occlusions. After combining with our a↵ordance prior, we obtain more reasonable predictions.

Affordance Prior Pose Prediction Pose Prediction + Prior
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4 Visualizations on NYUv2 test set

We apply our model on the NYUv2 test set [2] as shown below. We can see that although our model is learned in
TV show videos, it can generate very reasonable results in NYU dataset. For example, the second pose in the first
row is sitting beside the minibar.
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